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SUMMARY

Multisite phosphorylation plays an important role in
biological oscillators such as the circadian clock.
Its general role, however, has been elusive. In this
theoretical study, we show that a simple substrate
with two modification sites acted upon by two
opposing enzymes (e.g., a kinase andaphosphatase)
can show oscillations in its modification state. An
unbiased computational analysis of this oscillator
reveals two common characteristics: a unidirectional
modification cycle and sequestering of an enzyme by
a specificmodification state. These twomotifs cause
a substrate to act as a coupled system in which a
unidirectional cycle generates single-molecule oscil-
lators, whereas sequestration synchronizes the
population by limiting the available enzyme under
conditions in which substrate is in excess. We also
demonstrate the conditions under which the oscilla-
tion period is temperature compensated, an impor-
tant feature of the circadian clock. This theoretical
model will provide a framework for analyzing and
synthesizing posttranslational oscillators.

INTRODUCTION

For a wide variety of organisms, biology runs on a schedule. The

control of cellular and organismal processes by biochemical

clocks has a number of potential advantages. The circadian

clock system allows organisms to anticipate ecological changes

that correlate with the day/night cycle, regulating both behavioral

patterns and metabolic fluxes. The period of circadian rhyth-

micity is robust and fairly unaffected by the ambient temperature

(Hastings and Sweeney, 1957; Pittendrigh, 1954).

Circadian clocks are thought to be driven by cell-autonomous

transcriptional-translational oscillators (TTOs) (Dibner et al.,
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2010; Dunlap, 1999; Reppert and Weaver, 2002; Takahashi

et al., 2008; Young and Kay, 2001). In mammalian clocks, the

circadian transcriptional program is mediated by at least

three clock-controlled DNA elements, known as morning-time

(E-box/E0-box or E/E0-box), day-time (D-box), and night-time

(Rev-Erb/ROR binding element or RRE) elements (Ueda et al.,

2005). The E/E0-box-mediated transcriptional program has a crit-

ical role in the core autoregulatory loop of the mammalian circa-

dian clock (Gekakis et al., 1998; Sato et al., 2006). In this core

loop, bHLH-PAS transcriptional activators such as BMAL1 and

CLOCK form heterodimers that directly and indirectly activate

the transcription of their target genes, including the tran-

scriptional repressors Per and Cry. PERs and CRYs in turn

form repressor complexes that physically associate with the

BMAL1/CLOCK complex to inhibit E/E0-box-mediated transcrip-

tion, closing the negative feedback loop (Griffin et al., 1999;

Kume et al., 1999; Okamura et al., 1999). This negative feedback,

together with delayed expression of Cry, is critical for self-

sustained circadian clock function (Hogenesch and Ueda,

2011; Ueda et al., 2005; Ukai-Tadenuma et al., 2011).

In the mammalian clock, however, transcription and transla-

tion are not the whole story; multisite phosphorylation also plays

a central role (Gallego and Virshup, 2007). PER proteins undergo

robust circadian changes in phosphorylation (Lee et al., 2001).

Mutations in the potential phosphorylation sites of PERs or in

their kinases, such as casein kinase I ε/d (CKIε/d), alter the circa-

dian period (Lowrey et al., 2000; Meng et al., 2008; Toh et al.,

2001; Xu et al., 2005, 2007). The oscillation period is also

affected by pharmacological perturbation of CKI, CKII, or

GSK3b (Chen et al., 2012; Hirota et al., 2008; Isojima et al.,

2009; Meng et al., 2010; Tsuchiya et al., 2009; Walton et al.,

2009). PER proteins can be phosphorylated at multiple sites by

these kinases (Camacho et al., 2001; Gallego et al., 2006a; Maier

et al., 2009; Schlosser et al., 2005; Takano et al., 2000; Tsuchiya

et al., 2009; Vanselow et al., 2006). Furthermore, temperature-

insensitive phosphorylation of a PER-derived peptide by CKIε/d

has been observed in vitro (Isojima et al., 2009). In addition

to phosphorylation, the reverse reaction, dephosphorylation,

mailto:uedah-tky@umin.ac.jp
http://dx.doi.org/10.1016/j.celrep.2012.09.006


seems to play an important role in the mammalian circadian

clock because the oscillation period is also affected by the phar-

macological or RNA-interference-mediated perturbation of

protein phosphatase 1 (PP1), which has been implicated in the

dephosphorylation of PER (Gallego et al., 2006b; Lee et al.,

2011; Schmutz et al., 2011) and PP5 (Partch et al., 2006).

The central role played by circadian posttranslational oscilla-

tors (PTOs) mediated by multisite phosphorylation is best

understood in cyanobacteria. Purified clock proteins from the

cyanobacterium Synechococcus elongatus can be used to

reconstitute an in vitro posttranslational circadian oscillator

(Johnson et al., 2008; Nakajima et al., 2005). This system

contains three essential proteins: KaiA, KaiB, and KaiC. KaiC

exhibits both autophosphorylation and autodephosphorylation

activities; autophosphorylation is enhanced by KaiA, whereas

KaiB inhibits KaiA. When the three proteins are incubated

together with an excess of ATP, the phosphorylation level of

KaiC oscillates with an �24 hr period. The period of KaiC phos-

phorylation oscillations is fairly unaffected by the incubation

temperature, suggesting that the KaiC PTO is a bona fide

circadian oscillator. Studies have further shown that the phos-

phorylation cycle involves the sequential phosphorylation and

dephosphorylation of two sites in KaiC (Nishiwaki et al., 2007;

Rust et al., 2007).

It is even possible that posttranslational mechanisms might

permit the mammalian circadian clock to operate in the absence

of regulation by gene expression. When cultured fibroblast cells

are treated with reagents that interfere with transcription, one

would expect oscillations based on a TTO to be severely

affected. Instead, circadian oscillations are robust to changes

in transcription rate (Dibner et al., 2009). In addition, cyclic

expression of Bmal1 and Clock seems not to be necessary for

circadian rhythmicity (vonGall et al., 2003). As for CRY, rhythmic,

phase-specific expression of Cry1 is critical for robust circadian

oscillation (Ukai-Tadenuma et al., 2011), yet Cry1�/�:Cry2�/�

cells can exhibit weak circadian oscillations under constant

expression of Cry1 (Ukai-Tadenuma et al., 2011) or a constant

supply of CRYs (Fan et al., 2007). Further evidence comes

from red blood cells, which show a circadian variation in the

cellular redox state despite the absence of transcription (O’Neill

and Reddy, 2011). While these results do not constitute direct

evidence of a posttranslational oscillator that can operate inde-

pendently from transcription, they suggest that processes other

than transcription and translation may be responsible for oscilla-

tions under some conditions.

One simple and attractive possibility is that, under some

conditions, multisite phosphorylation systems can oscillate

without additional regulation. Theoretical studies have indicated

that multisite phosphorylation systems can exhibit a large

number of stable states under very generic conditions (Marke-

vich et al., 2004; Thomson and Gunawardena, 2009). Previous

studies of oscillatory phosphorylation systems, such as the cya-

nobacterial clock (Clodong et al., 2007; Rust et al., 2007; van Zon

et al., 2007), mitogen-activated protein kinase (MAPK) systems

(Chickarmane et al., 2007; Liu et al., 2011; Qiao et al., 2007;

Shankaran et al., 2009), and other biochemical oscillators (Ferrell

et al., 2011; Kholodenko, 2006; Novák and Tyson, 2008) typically

employed complex regulatory schemes. Cyanobacterial clock
C

models (Clodong et al., 2007; Rust et al., 2007; van Zon et al.,

2007) are constructed based on the autokinase and autophos-

phatase properties of KaiC. This unique feature makes the

detailed conclusions drawn from these models difficult to apply

to generic enzyme-substrate reactions. MAPK models are con-

structed based on a more general substrate-enzyme reaction

scheme, but they often involve multiple substrates sharing an

enzyme, protein synthesis, and degradation, or active feedback

regulation of enzyme activity by a substrate. It is not clear

whether such intricate regulation is required for oscillations, or

whether a more generic system would suffice.

Here we show that autonomous, robust oscillations are

possible in a system consisting of a single substrate with two

phosphorylation sites. The substrate is modified by one kinase

and one phosphatase, and no additional regulation is necessary.

In a sense, this is the simplest possible biochemical oscillator. An

extensive search of the model’s parameter space reveals two

design motifs for a simple biochemical oscillator. These features

can be readily associated with known properties of PERs, CKIε/d

and other enzyme-substrate pairs described above. Under some

conditions, the oscillation period is almost unaffected by

systematic changes in the enzyme reaction rates induced by

temperature differences, suggesting that temperature compen-

sation is possible in this system. The simplicity and generality

of the model make it a potentially useful design tool for de

novo biochemical oscillators, and suggest that biological post-

translational oscillation may be more common than previously

suspected.

RESULTS

Multisite Substrate Modifications Can Oscillate
with Two Opposing Enzymes
To elucidate the minimum requirements for a PTO, we began by

defining a set of components. Cyclic changes in substrate phos-

phorylation state require both a kinase and a phosphatase.

Single-site systems will converge to a unique steady state under

relevant conditions (see Extended Experimental Procedures;

Figure S1), and a two-site system is the simplest one in

which oscillations might be possible (Figure 1A). The model is

described as a phosphorylation system, but the same results

could be applied to any type of posttranslational modification.

There are four distinct substrate states (Figure 1B): S00, which

is completely unphosphorylated; S01 and S10, which are singly

phosphorylated; and S11, which is doubly phosphorylated. The

same kinase (E) and phosphatase (F) act on both sites. All

reactions involve a 1:1 association of enzymes and substrates,

with an intermediate enzyme-substrate complex (Figure 1C).

The reactions are describedwith the use ofmass-action kinetics.

Although the model equations do not explicitly assume enzyme

saturation by substrate, we assumed an excess of substrate

over enzyme, and enzyme-substrate binding was usually

saturated.

We found that sustained oscillations could be observed in

certain parameter regions (Figure 1D). After an initial transient,

integrations that began under different initial conditions rapidly

converged to a common trajectory with the same amplitude

and period, in other words, a limit-cycle oscillation (Figure 1E).
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Figure 1. Multisite Substrate Modifications

Can Oscillate with Two Opposing Enzymes

(A) A phosphatase (blue) or a kinase (green) acting

on the substrate alone will yield monotonic con-

vergence to a steady state, as indicated by blue

and green curves. A kinase and phosphatase

acting in concert are required for sustained oscil-

lations (red).

(B) PTO reaction network. The substrate can be

phosphorylated on two distinct sites, and the

kinase and phosphatase act on all four phos-

phorylation states.

(C) Enzymatic reactions involve an intermediate

enzyme-substrate complex.

(D) Time course of oscillations for an example

parameter set.

(E) Oscillations projected into the S00-S10 plane.

Different initial transients (colored arrows) con-

verge rapidly to a single limit-cycle attractor

(black).

See also Figure S1.
In our system, a limit-cycle oscillation is present only when the

equilibrium state is unstable.

Oscillatory Systems Possess Two Design Motifs
Once we had represented the system as a system of dynamical

equations, our next aim was to determine which values of the

system parameters would lead to sustained oscillations. The

rate constants k1...k8 represent the number of substrate mole-

cules converted to product molecules in a given reaction per

enzyme per minute. The binding constants Km1.Km8 are the

substrate concentrations at which the rates of reaction 1–8 reach

half of their maximum. If the binding is strong, then Kmwill be low

because the enzyme-substrate binding is easily saturated. This

system is too large and complex for straightforward analytical

study, so we chose to identify solutions numerically through an

extensive search of parameter space.

We generated solutions by selecting parameters from an

exponential distribution bounded to the interval 1–1,000 min�1

for k1–k8 and 0.01–1,000 mM for Km1–Km8. This range corre-

sponds to reasonable values typically used to model systems

such asMAPK (Chickarmane et al., 2007; Liu et al., 2011; Marke-

vich et al., 2004; Qiao et al., 2007; Shankaran et al., 2009).
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The ‘‘hit rate’’ of oscillating parameter

sets was rather low, �0.1%. The search

was continued until �106 oscillating

parameter sets had been found (Fig-

ure 2A). Because this population may

contain several distinct types of oscilla-

tors, we categorized the parameter

sets using a clustering algorithm that

accounts for the symmetry of the reaction

network (see Extended Experimental

Procedures). Two major clusters were

present over a wide range of cluster

diameters, and we chose a diameter for

which these two clusters accounted for

�70% of solutions (Figures 2B and
S2A). The parameter distributions for the major clusters are

shown in Figure 2C. Both clusters exhibit approximate

symmetry: fast and slow reactions or strong and weak binding

constants tend to be located at symmetry-related positions.

For example, in cluster 1, k1, k8, Km2, and Km7 all tend to be

high, whereas k2, k7, Km4, and Km5 all tend to be low. The sche-

matic diagrams shown in Figure 2D will be unchanged if the

diagram is rotated 180� and the kinase and phosphatase are

interchanged. Symmetry will rarely be exact for individual

parameter sets; the symmetric pattern emerges only when a

large number of parameter sets are compared.

Based on these histograms, consensus features of eachmajor

cluster can be identified (Figure 2D). Two design motifs are

shared by both major clusters. The first is a unidirectional bias:

in general, the rates of the ‘‘forward’’ (clockwise) reactions, k1,

k3, k6, and k8, are higher than the corresponding ‘‘reverse’’ reac-

tions, k5, k7, k2, and k4, respectively. The second is the presence

of enzyme-sequestering steps. In cluster 1, the value of Km4 is

usually low, meaning that S10 binds the kinase very strongly.

The kinase-catalyzed S10/S11 conversion is much slower

than its reverse reaction; in this sense, the binding of the kinase

by S10 is unproductive. Although the S10/S00 conversion is
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Figure 2. Oscillatory Systems Possess Two

Design Motifs

(A) Workflow for motif identification.

(B) Results of QT clustering with a (unitless)

diameter of 10.5.

(C) Parameter histograms for the two largest

clusters. Although considerable variability exists,

clear trends in rate and binding constants can be

distinguished.

(D) Schematic representation of cluster motifs.

Fast reactions are indicated by thick arrows; slow

reactions are indicated by dotted arrows. Indirect

negative regulation by enzyme sequestration is

indicated by curved arrows with flat ends.

See also Figure S2.
fairly slow, it will proceed to completion because its reverse

reaction (S00/S10) is inhibited by the kinase sequestration.

The next forward reaction, S00/S01, requires the kinase and is

unable to proceed until S10 has been depleted by conversion

to S00. Once the S10/S00 reaction has gone to completion,

nearly the entire substrate population will be in the S00 state

and the kinase will no longer be sequestered by S10. At this point,

the kinase can bind S00 and the inhibited S00/S01 reaction can

proceed. In the same way, the phosphatase is sequestered by
Cell Reports 2, 938–950,
S01 (i.e., Km5 is low), inhibiting the subse-

quent S11/S10 step. These sequestra-

tion steps create checkpoints that ensure

that the oscillatory cycle cannot proceed

until one substrate state has been

depleted and most of the substrate pop-

ulation has moved into the subsequent

state.

The situation in cluster 2 is only slightly

different. A low value of Km1 means that

S00 binds the kinase strongly. Unlike the

unproductive S10-kinase complex, this

complex is involved in a forward reaction

and leads to the production of S01. The

subsequent kinase-catalyzed S01/S11

reaction, however, cannot proceed until

S00 has been depleted, resulting in

a checkpoint that requires nearly the

entire population to accumulate as S01.

The low value of Km8 means that the

phosphatase is sequestered by S11, and

therefore most of the population has to

accumulate as S10 before the S10/S00

step can proceed.

The remaining small clusters (�30% of

the total) are generally similar to either

cluster 1 or cluster 2. If all parameter

sets assigned to neither cluster 1 nor

cluster 2 are grouped together, their

parameter distribution is similar to that

of cluster 1 or cluster 2. For example, Fig-

ure S2B shows both cluster-2-type

characteristics (high k3 and k6, low k4

and k5, and low Km1 and Km8) and cluster-1-type characteristics

(high k1 and k8, low k2 and k7, and low Km4 and Km5). To a first

approximation, therefore, solutions can be categorized as being

similar to either cluster 1 or cluster 2. The presence of two

distinct oscillatory clusters in parameter space can also be

confirmed by principal components analysis (PCA) (Figures

S2C and S2D).

To summarize, an extensive search of the 16-dimensional

parameter space revealed two types of oscillatory parameter
October 25, 2012 ª2012 The Authors 941
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(A) Unidirectional modification cycle. Clockwise reactions are faster than counterclockwise ones, leading the system to prefer the ordering S00,S01,S11,S10,S00..

(B) Indirect negative regulation by enzyme sequestration.

(C) Imposing the strong binding associated with enzyme sequestration during the random parameter search results in modest gains in the oscillator discovery

rate. If this constraint is combined a clockwise rate constant bias, the discovery rate rises substantially.

See also Figure S3.
sets, illustrated in Figure 2D. Based on their parameter distribu-

tions, we have proposed two design motifs: a unidirectional bias

of catalytic rate constants and indirect negative regulation

through enzyme sequestration.

Functional Significance of Two Design Motifs
The random-search results surely contain a large number of

statistical correlations. How then can we determine whether

the design motifs described above actually promote oscillation?

One approach is to begin with a design motif and use it to

constrain the search process (Figures 3A and 3B). If an alleged

motif helps to improve the rate of oscillator discovery, then it is

functionally significant. Enforcing a clockwise bias in the rate

constants, for example, increases the hit rate 3.4-fold (Figure 3C).

Constraining the search such that Km4 is low improves the

success rate 1.5-fold. If both constraints are combined, a 6.8-

fold increase is achieved. Requiring both Km4 and Km5 to be

low and maintaining the rate constant bias enforces the entire

cluster 1 pattern; this gives an oscillator discovery rate that is

23.6 times the unbiased value. Qualitatively similar results can

be obtained for cluster 2. Requiring a low value for Km1 fails to

improve the success rate, but combining constraints on Km1

and/or Km8 with the rate constant bias yields significant

improvement.

Parameter histograms similar to those in Figure 2C were also

constructed from the constrained search results (Figure S3).

Although only part of the cluster 1 pattern was enforced (clock-

wise bias and low Km4), the complete pattern was often present.

For example, constraining Km4 to be low resulted in a low

value forKm5, and the distributions of the catalytic rate constants

are similar to those seen in Figure 2C. Although the distribution

for Km5 is broader than the distribution imposed for Km4,

and the presence of two strong sequestration motifs is not abso-
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lutely essential for oscillations, it is clear that oscillations are far

more probable with both motifs present than with only one

present.

Although the identification of design motifs from unbiased

random search results can be somewhat subjective, the ‘‘inverse

analysis’’ presented in this section shows that the motifs identi-

fied are functionally significant. Not only are unidirectional bias

and enzyme sequestration typically present in oscillating param-

eter sets, demanding their presence also increases the number

of oscillators found.

Period- and Amplitude-Determining Processes
Once we had identified oscillator-enriched regions of the param-

eter space, we aimed to determine which specific parameters

have a strong impact on system properties, in particular the

oscillation period and amplitude. In Figure 4A, an example of

a symmetric cluster 1 (see Table S1) is used as the reference

parameter set for bifurcation calculations (Strogatz, 1994). The

bifurcation diagrams in Figures 4A and S4A show the equilibrium

points (either stable or unstable) of the system, as well as the

period and amplitude of oscillations when they exist. Similar

bifurcation methods can also be used to characterize the robust-

ness of the oscillations (Figure S4B; Extended Experimental

Procedures).

The slow steps by which the enzyme-sequestering substrate

states are depleted can be expected to have a large effect on

the period. The bifurcation diagram for k3 confirms this intuition.

Although the impact of k3 on the oscillation amplitude is minimal,

decreasing k3 causes the period to increase dramatically, until

oscillations terminate in a Hopf bifurcation at k3y 73 10�4 (Fig-

ure 4A). Figure 4B illustrates the impact of k3 on period determi-

nation. When k3 is reduced by half, the transition phase from S01

to S11 (yellow-shaded) nearly doubles.
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(A) Two examples of single-parameter bifurcation

diagrams. Solid black lines denote stable fixed

points, and dashed black lines indicate an

unstable fixed point surrounded by a limit cycle.

Red vertical lines denote the parameter value in

the symmetric example set; see Table S1 for

precise values. Colored lines show oscillation

extrema, with the period indicated by the line

color; k3 has a dramatic effect on the period,

whereas Km4 primarily affects the amplitude. A

more extensive set of bifurcation diagrams is

shown in Figure S4.

(B) Effects of decreasing a single rate constant.

The oscillation cycle is divided roughly into two

halves: the net conversion of S10 to S01 (via S00) is

shown on a white background, and the net

conversion of S01 to S10 (via S11) is shown on

a shaded background. In the symmetric case (left),

these phases are of equal length. If k3 (the rate

constant for the slow S01/S11 conversion) is

halved, the length of the S01/S11/S10 phase

(shaded background) nearly doubles, indicating

that the reaction with rate k3 is rate limiting for this

phase. See also Figure S4 and Table S1.
Km4, the binding constant of kinase to S10, can be decreased

apparently without limit, whereas the maximum oscillatory value

of Km4 is limited by a supercritical Hopf bifurcation (Figure 4A).

Tight binding of the kinase by S10 (and of the phosphatase by

S01) is an important part of the design motif described above,

and the loss of sequestration rapidly abolishes oscillations.

Robustness of the Oscillation Period against Stochastic
Fluctuations
The mass-action approach assumes that chemical concentra-

tions are continuous variables that can take on any positive

value. At typical cellular volumes and concentrations, however,
Cell Reports 2, 938–950,
the discrete nature of molecules may be

important and a stochastic approach

becomes necessary. Stochastic simula-

tions also allow us to quantify the robust-

ness of oscillations against internal noise.

Noise tolerance is an important require-

ment for realistic biological models.

The results of stochastic simulations

for cluster 1 are shown in Figure 5 (see

Table S2; similar plots for cluster 2 are

shown in Figures S5A and S5B). For 600

molecules of each type of enzyme (main-

taining the concentrations used above for

a cell-like volume of 10�15 L), the oscilla-

tions are extremely robust. As the system

shrinks (i.e., the total number of mole-

cules decreases), the oscillator runs

slowly relative to the deterministic limit

(Figures 5A, S5C, and S5D; see also

Extended Experimental Procedures).
Even when only one of each type of enzyme was present, the

period length was surprisingly robust (the standard deviation of

the oscillation period was �2% of the mean period). These

results suggest that our model system is fairly robust to the

internal noise that will prevail at the cellular scale.

Coupling of Single-Molecule Oscillators Is a Design
Principle
Further insight can be gained by tracking the state of individual

molecules. Figure 5B shows the results of stochastic simula-

tions. The top panels show the bulk population behavior, and

the middle panels show smoothed trajectories of the four
October 25, 2012 ª2012 The Authors 943
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Figure 5. Coupling of Single-Molecule Oscillators Is a Design Principle

(A) Robustness of the oscillation period against stochastic fluctuations. Low-copy-number oscillations are slow (left) and variable (right) relative to larger systems.

In the continuous limit, the period is precisely 24 hr with zero variability.

(B) Top row: Plots of the bulk population for the cluster 1 oscillator (left), similar binding constants lacking a rate constant bias (middle), and similar rate constants

with a clockwise bias but no sequestration (right). Middle row: Smoothed traces showing the state of a single (arbitrarily chosen) substrate molecule. Bottom row:

Results for 100 individually tracked molecules, each shown as a horizontal raster line, color-coded as in the plots above. If synchronization by enzyme

sequestration is removed, the substrates still act as single-molecule oscillators but lack population-level coherence. If the unidirectional rate constant bias is

eliminated, the substrates become trapped and fail to progress around the cycle. See also Figure S5 and Table S2.
phosphorylation states of an arbitrarily chosen substrate mole-

cule. In the bottom panels of Figure 5B, each row of pixels repre-

sents a single substrate molecule, and different colors represent

the four phosphorylation states.

The middle panel of the ‘‘Cluster 1’’ column (Figure 5B) shows

cyclic transitions among the four phosphorylation states. Each

individual substrate molecule acts as a noisy oscillator, synchro-

nized with the rest of the population. In addition, the bottom
944 Cell Reports 2, 938–950, October 25, 2012 ª2012 The Authors
panel of the Cluster 1 column indicates clear bands of S11

(blue) and S00 (yellow) dominance; individual substrates experi-

ence S01 (cyan) transiently during the transition into the S11

band, and S10 (red) during the transition into the S00 band. Also

note that the S00/S01 and S11/S10 transitions seem fairly

sharp, whereas the S10/S00 and S01/S11 transitions are

more diffuse. This suggests that the population is coupled at

the S00/S01 and S11/S10 transitions, where they are



synchronized by enzyme sequestration. The same is true for

sequestration of phosphatase by S01.

We next observed single-molecule behaviors when either

one of the two design motifs was removed. When the unidirec-

tional motif was removed (by setting k1–k8 equal but main-

taining binding affinities), the individual substrate molecules

no longer cycled through phospho-states in a defined order

(the ‘‘No bias’’ column). When the sequestration motif was

removed (by setting all binding affinities equal), phospho-state

transitions failed to synchronize (the ‘‘No sequestration’’

column). Although the bulk population converged to a stable

fixed point, individual substrate molecules still transitioned

between phospho-states in a defined order (middle and

bottom panels). These results confirm that (1) the design motif

of unidirectional modification cycle constitutes a single-mole-

cule oscillator, and (2) the design motif of enzyme sequestra-

tion serves to synchronize noisy single-molecule oscillators,

suggesting that coupling of single-molecule oscillators is a

design principle.

The Period of a Simple PTO Can Be Temperature
Compensated
To qualify as a bona fide circadian clock, an �24 hr cellular

rhythm must also exhibit temperature compensation, meaning

that the oscillation period is fairly robust to changes in tempera-

ture. The temperature coefficient Q10 measures the factor by

which a process accelerates when the temperature is raised

by 10�C. Typical Q10 values for biochemical reactions range

from 2 to 3; measured values for circadian clocks range from

0.8–1.4 (Dunlap et al., 2003).

In our model system, one can calculate Q10 values for the

oscillation period by assuming temperature coefficients Q10
(E)

and Q10
(F) for the kinase and phosphatase, and rescaling the

rate constants in accordance with a given temperature

change (Extended Experimental Procedures; Figures 6A and

S6A–S6C). Q10
(E) and Q10

(F) do not uniquely determine the oscil-

lation Q10 (Q10
(cycle)); by analyzing a large number of parameter

sets, one can calculate a histogram of Q10 values (Figure 6B).

In general, larger values of Q10
(E) and Q10

(F) cause the peak of

Q10
(cycle) to be shifted to higher values, and the width of

the Q10
(cycle) distribution increases with the difference between

Q10
(E) and Q10

(F). We considered the case with Q10
(E) = 1 and

Q10
(F) = 3, corresponding to a temperature-insensitive kinase

(such as CKIε/d; Isojima et al., 2009) and a typical phosphatase.

The resulting histogram includes populations that are strongly

undercompensated (Q10 >> 1) as well as some that are overcom-

pensated (Q10 < 1; Figure 6C).

Different degrees of temperature sensitivity correlate with

changes in the distribution of individual parameters (Figures

6D, S6D, and S6E). In general, undercompensated oscillators

will have higher rates for the temperature-insensitive kinase

reactions and lower rates for the temperature-sensitive phos-

phatase reactions, such that the rate-determining steps are

strongly affected by temperature. For well-compensated oscilla-

tors, the opposite is true (Figure 6E), and temperature compen-

sation can be observed even in stochastic simulations (Figure 6F;

Table S3). See the Extended Experimental Procedures for

a more extensive discussion of this issue.
C

DISCUSSION

General Applicability of a Design Principle Composed
of Two Design Motifs
Although the model developed in this study is very simple, we

can extract a design principle of wider applicability. Two design

motifs appear to be required for robust oscillations (Figure 7A).

The first is a well-defined ordering of phosphorylation states, in

which the rate constants in the forward direction around the

loop are (in general) faster than those in the reverse direction.

The other design motif is the presence of synchronizing check-

points at which single-molecule oscillators that have progressed

more quickly must stop and wait for the others. This is accom-

plished by enzyme sequestration: the cycle cannot proceed

past a checkpoint until a strong-binding substrate population

has been sufficiently depleted to permit competing reactions.

The general design principles uncovered in this study can also

be applied to situations in which more than two phosphorylation

sites or more than one kinase (and phosphatase) are present

(Figure 7B). The principle may be also conserved when protein

degradation and synthesis are incorporated in an appropriate

position: if a substrate acts as a repressor for its own transcrip-

tion and is degraded depending on phosphorylation, then such

a transcription-degradation pathway will be compatible with

the role of phosphatase reaction (i.e., the disappearance of

phosphorylated substrate will lead to the appearance of unphos-

phorylated substrate; Figure 7C; Extended Experimental

Procedures).

In this study we considered the behavior of an isolated PTO;

oscillators in real biological systems are responsive to external

signals that can modify their behavior. In this context, the

relationship of our model to ‘‘integrators’’ (which accumulate a

response to incoming signals) and ‘‘resonators’’ (which respond

preferentially to signals with a given frequency) may be an inter-

esting avenue for future study (Conrad et al., 2008; Guantes and

Poyatos, 2006).

Two Design Motifs Are Present in the Natural Circadian
Clocks
The design principle mentioned above can easily be related to

known properties of substrates and enzymes involved in circa-

dian clock systems. In the cyanobacterial clock, the phosphory-

lation states of the clock protein KaiC have a well-defined cyclic

order (Nishiwaki et al., 2007; Rust et al., 2007), similar to the first

design motif (unidirectional modification cycle) in our model. In

higher eukaryotes, CKIε/d predominantly phosphorylates the

consensus sequence pS-x-x-S*, where pS is a phosphorylated

serine, x can be any amino acid, and S* is the target serine

(Flotow et al., 1990). This motif promotes ordered phosphoryla-

tion: if the substrate contains a pS-x-x-S-x-x-S sequence,

CKIε/d will tend to phosphorylate the second serine before the

third. In mammalian PER proteins, contiguous S-x-x-S motifs

have been shown to be important for period determination

(Toh et al., 2001; Vanselow et al., 2006; Xu et al., 2007).

For the second motif (enzyme sequestration), tight binding

between the enzyme and substrate is required. Tight enzyme-

substrate binding is found in several enzymes involved in circa-

dian clock systems. In mammals, CKIε/d forms a stable complex
ell Reports 2, 938–950, October 25, 2012 ª2012 The Authors 945
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Figure 6. The Period of a Simple PTO Can Be Temperature Compensated

(A) Workflow diagram.

(B) Histogram of Q10
(cycle) values with different combinations of Q10

(E) and Q10
(F); Q10 for binding/unbinding reactions is assumed to be 3.0 for all calculations.

(C) Histogram of Q10
(cycle) values when Q10

(E) = 1, Q10
(F) = 3. Parameter sets were separated into one of five groups depending on their degree of temperature

overcompensation (blue) or undercompensation (red).
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with PERs that is important for clock function (Akashi et al., 2002;

Camacho et al., 2001; Lee et al., 2004; Vielhaber et al., 2000).

PP1 also interacts strongly with PERs (Gallego et al., 2006b). It

is not known whether these tight bindings serve to synchronize

substrates in different phases of an oscillation cycle, but both

experimental and theoretical studies have highlighted enzyme

sequestration as a source of nonlinearity in biochemical reac-

tions (Blüthgen et al., 2006; Legewie et al., 2006, 2007; Marke-

vich et al., 2004).

Comparison with Other PTO Models
The design motifs uncovered in this study can also be seen in

other mathematical models of PTOs. MAPK is typically modeled

as a two-site system with strictly sequential phosphorylation,

such that only three states exist (Huang and Ferrell, 1996; Kho-

lodenko, 2000; Markevich et al., 2004). Feed-forward inhibition

interactions similar to those described in this study can generate

bistability, but oscillations require larger cascades or feedback

loops. The cyanobacterial circadian clock has also been

modeled extensively (Clodong et al., 2007; Hatakeyama and

Kaneko, 2012; Rust et al., 2007; van Zon et al., 2007). These

models also tend to converge on design features similar to

ours, in that they typically employ some mechanism (often

involving conformational changes or complex formation) to

ensure that individual KaiC hexamers visit phosphorylation

states in a well-defined order, and the oscillations of the indi-

vidual hexamers are synchronized through competition for

a limited pool of KaiA. A more detailed examination of individual

models can be found in the Extended Experimental Procedures.

Although previous studies generally focused on correctly

reproducing the behavior of a specific experimentally character-

ized system, here we focused on mapping out possible behav-

iors for a very general system. It is therefore quite striking that

our approach, which began with no constraining assumptions

about what kind of design features should promote oscillation,

should lead to fairly similar conclusions.

Strategies for Experimental Validation
Our modeling results can inform the design or discovery of PTOs

in several ways. No unusual substrate properties are necessary,

so a simple substrate, such as a short peptide, might be

adequate.

The low probability of finding oscillations in our nonbiased

search may raise questions about the feasibility of discovering

PTOs experimentally. Results from the constrained-parameter

search, however, show that one can increase the probability

>20-fold by requiring sequential (de)phosphorylation and tight

enzyme-substrate binding. These features are likely to be imple-

mented (at least in part) in substrates and enzymes found in

natural oscillatory systems. Accordingly, as a starting point for
(D) Examples of parameter histograms for different oscillator groups, color-code

network (Figure 1B) and would be equivalent if the roles of kinase and phosphat

(E) Schematic diagrams of the extremes of temperature sensitivity. In the underco

sensitive phosphatase, whereas in the overcompensated case (bottom) the tem

(F) Stochastic simulation results for a particular temperature-compensated param

See also Figure S6 and Table S3.

C

experimental investigation, CKIε/d, a PER-derived peptide, and

an appropriate phosphatase might be a suitable ex vivo PTO.

CONCLUSIONS

This study illustrates the potential for robust oscillations to exist

in a very simple kinase-phosphatase reaction system. This

requires two design motifs: a well-ordered sequence of phos-

phorylation states and synchronization by enzyme sequestra-

tion. Although the vastmajority of possible parameter sets exam-

ined here did not result in sustained oscillations, we were able to

construct a typical example of an oscillatory parameter set with

reaction rates and binding constants that were within a reason-

able range for polypeptide kinases. The ultimate test of the utility

of this proposed model, ‘‘proof by synthesis,’’ lies ahead.

EXPERIMENTAL PROCEDURES

Modeling the PTO with Two Phosphorylation Sites

The PTO can be described using a system of 14 coupled ordinary differential

equations (ODEs) describing the concentrations of four substrate phospho-

forms, eight substrate-enzyme complexes, and two unbound enzymes

(Figure 1B; the full system of equations is presented in Extended Experimental

Procedures). In the case of branching reactions (e.g., phosphorylation of S00 to

form either S01 or S10), it is assumed that two different types of enzyme-

substrate complexes are formed (ES00a or ES00b, respectively), consistent

with the presence of two distinct phosphorylation sites on the substrate

molecule. Calculations were also performed with the opposite assumption

(a single complex ES00 that can lead to either S01 or S10), and the results

were qualitatively similar (Figure S1).

Biased Parameter Search

When a forward bias in the rate constants was desired (Figure 3), numbers

were selected from the exponential distribution two at a time, with the larger

number being assigned to a forward (clockwise) reaction (k1, k3, k6, or k8)

and the smaller number assigned to the corresponding reverse (counterclock-

wise) reaction (k5, k7, k2, or k4, respectively; Figure 3A). Enzyme sequestration

was encouraged by selecting constrained binding constants from an exponen-

tial distribution over 0.01–0.05 mM rather than 0.01–1,000 mM (Figure 3B).

Defining ‘‘Typical’’ Parameter Sets

A stereotypical example was generated for each of the dominant clusters; the

parameter values chosen are listed in Table S1, and oscillations for the cluster

1 example are depicted in Figure 4A. These example clusters were designed to

exhibit symmetry, so that ki = kj and Kmi = Kmj for (i,j)˛ {(1,8),(2,7),(3,6),(4,5)}.

Rate constants were scaled to ensure an oscillation period of 24 hr.

Bifurcation Analysis

Beginning from these stereotypical parameter sets, each parameter was

systematically varied beyond the range of values over which oscillations are

possible, and concentrations at the fixed points and the oscillation extrema

were calculated. Although the starting parameter sets were symmetric, this

symmetry was not maintained during bifurcation calculations. Note that,

because of symmetry, bifurcation calculations were needed for only half of

the parameters. For example, the diagram for k8 can be obtained by
d as in (C). The parameters k1 and k8 are located at symmetric positions in the

ase were interchanged.

mpensated case (top) the rate-limiting steps are catalyzed by the temperature-

perature-insensitive kinase steps are rate limiting.

eter set.
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Figure 7. Generalizations of the PTO Model

(A) Simplified view of the PTO model examined in this work.

(B) The mechanisms outlined in this work could be realized in a more complex

system with a larger number of phosphorylation states and more than two

enzymes.

(C) Similar considerations could apply in a case in which the dephosphoryla-

tion of highly phosphorylated substrate is replaced by coupled processes of

degradation and gene expression.
exchanging S00 with S11 and S01 with S10 in the k1 calculation; the bifurcation

points and period dependence will be identical.

Stochastic Simulation

We studied the reaction networks using the stochastic simulation algorithm

(Gillespie, 1977) as implemented in SPPARKS (Plimpton et al., 2009). To
948 Cell Reports 2, 938–950, October 25, 2012 ª2012 The Authors
monitor the behavior of individual substrate molecules, we modified the

stochastic simulations so that in addition to a large pool of ‘‘ordinary’’ substrate

molecules, the system contains a smaller number of ‘‘labeled’’ substrate

molecules whose progression through the four phosphorylation states can

be tracked. The interactions of the four phospho-forms of these labeled

substrate molecules with the kinase and phosphatase are identical to their

unlabeled counterparts, but each can be followed in the stochastic simulation

as a separate molecular population, allowing us to observe how a single

substrate molecule experiences the oscillatory cycle.
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Full System of Equations (Mass-Action Kinetics)
(See ‘‘Modeling the PTO with Two Phosphorylation Sites’’ in Experimental Procedures section.)

d½S00�
dt

= � ðkb1 + kb2Þ½S00�½E�+ kub1½ES00a�+ kub2½ES00b�+ k5½FS01�+ k6½FS10�

d½S01�
dt

= � kb3½S01�½E�+ kub3½ES01� � kb5½S01�½F�+ kub4½FS01�+ k1½ES00a�+ k7½FS11a�

d½S10�
dt

= � kb4½S10�½E�+ kub4½ES10� � kb6½S10�½F�+ kub6½FS10�+ k2½ES00b�+ k8½FS11b�

d½S11�
dt

= � ðkb7 + kb8Þ½S11�½F�+ kub7½FS11a�+ kub8½FS11b�+ k3½ES01�+ k4½ES10�

d½ES00a�
dt

= kb1½E�½S00� � ðkub1 + k1Þ½ES00a�
d½ES00b�

dt
= kb2½E�½S00� � ðkub2 + k2Þ½ES00b�

d½ES01�
dt

= kb3½E�½S01� � ðkub3 + k3Þ½ES01�
d½ES10�

dt
= kb4½E�½S10� � ðkub4 + k4Þ½ES10�

d½FS01�
dt

= kb5½F�½S01� � ðkub5 + k5Þ½FS01�

d½FS10�
dt

= kb6½F�½S10� � ðkub6 + k6Þ½FS10�

d½FS11a�
dt

= kb7½F�½S11� � ðkub7 + k7Þ½FS11a�

d½FS11b�
dt

= kb8½F�½S11� � ðkub8 + k8Þ½FS11b�

d½E�
dt

= � ððkb1 + kb2Þ½S00�+ kb3½S01�+ kb4½S10�Þ½E�+ ðkub1 + k1Þ½ES00a�+ ðkub2 + k2Þ½ES00b�+ ðkub3 + k3Þ½ES01�+ ðkub4 + k4Þ½ES10�

d½F�
dt

= � ðkb5½S01�+ kb6½S10�+ ðkb7 + kb8Þ½S11�Þ½F�+ ðkub5 + k5Þ½FS01�+ ðkub6 + k6Þ½FS10�+ ðkub7 + k7Þ½FS11a�+ ðkub8 + k8Þ½FS11b�

[S00], [S01], [S10] and [S11] represent concentrations of the four substrate phosphorylation states, [E] and [F] are the concentrations

of free (unbound) kinase and phosphatase, and [ES00a], [ES00b], [ES01], [ES10], [FS01], [FS10], [FS11a] and [FS11b] are the concentrations

of the eight distinct enzyme-substrate complexes. The catalytic rate constants (i.e., number of enzyme-substrate complexes con-

verted to enzyme/product pairs per unit time) are k1 through k8, binding constants (i.e., number of substrate molecules bound into

enzyme-substrate complexes per enzyme per unit time) are kb1 through kb8 and unbinding constants (i.e., number of enzyme-

substrate complexes dissociating into enzyme/substrate pairs per unit time) are kub1 through kub8.

Closed, isolated systems in which all processes are reversible obey the detailed balance condition, which requires that the

system’s time evolution converge to a unique, stable equilibrium point (Kampen, 2007). In our system, the unbinding of product

from enzyme is irreversible, so detailed balance is violated and oscillations are possible. Using chemical reaction network theory

(Feinberg, 1987a) it can easily be shown that reversible product unbinding will eliminate the possibility of oscillations. For similar

reasons, replacing the kinase and phosphatase by a single bifunctional enzyme capable of catalyzing both reactions reintroduces

detailed balance and precludes oscillations.

Simplified System with Michaelis-Menten Approximation
It can easily be shown that this system of equations is not independent, and can be reformulated as a system of 11 ODEs and three

algebraic equations describing the conserved total levels of substrate, kinase, and phosphatase. The systemcan be simplified further

if one makes the Michaelis-Menten approximation (Michaelis and Menten, 1913), in which the binding and unbinding of substrate-

enzyme complexes is assumed to be in instantaneous equilibrium, so that the concentrations of the enzyme-substrate complexes

[ES00a], [ES00b], [ES01], [ES10], [FS01], [FS10],[FS11a] and [FS11b] can be replaced with their steady-state expressions (Figure 1C).

Kmx =
ðkubx + kxÞ

kbx
; x ˛ 1; 2; 3;4;5;6;7; 8
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d½S00�
dt

= �
�

k1
Km1

+
k2
Km2

�
½S00�½E�+ k5½F�½S01�

Km5

+
k6½F�½S10�

Km6

d½S01�
dt

=
�k3½S01�½E�

Km3

� k5½F�½S01�
Km5

+
k1½E�½S00�

Km1

+
k7½F�½S11�

Km7

d½S11�
dt

= �
�

k7
Km7

+
k8
Km8

�
½S11�½F�+ k3½E�½S01�

Km3

+
k4½E�½S10�

Km4

½S10�=Stot � ð½S00�+ ½S01�+ ½S11�+ ðEtot � ½E�Þ+ ðFtot � ½F�ÞÞ

½E�= Etot

ð1+ ½S00�=Km1 + ½S00�=Km2 + ½S01�=Km3 + ½S10�=Km4Þ

½F�= Ftot

ð1+ ½S01�=Km5 + ½S10�=Km6 + ½S11�=Km7 + ½S11�=Km8Þ

The resulting equations represent the system as a system of three ODEs and three algebraic equations; it is possible to eliminate

the algebraic equations by substitution, but the resulting nonlinear expressions are unwieldy and do little to aid in understanding the

system, so we do not present them here. The binding and unbinding rate constants have been replaced by the binding constants Km1

throughKm8.Kmi is the substrate concentration at which the rate of reaction i reaches half of its maximum; if binding is strong then Kmi

will be low because the enzyme-substrate binding is easily saturated. Numerical integration indicates that this reduced system gives

identical results to the full dynamical system for physically-reasonable values of the rate constants.

Stability of the Single-Site Phosphorylation System
(See ‘‘Multisite Substrate Modifications Can Oscillate with Two Opposing Enzymes’’ in Results section).

If only a single phosphorylation site is present, then the system of mass-action equations can be written as:

d½S0�
dt

= � kb0½E�½S0�+ kub0½ES0�+ kF ½FS1�
d½S1�
dt

= � kb1½F�½S1�+ kub1½FS1�+ kE ½ES0�

d½ES0�
dt

= kb0½E�½S0� � ðkub0 + kEÞ½ES0�

d½FS1�
dt

= kb1½F�½S1� � ðkub1 + kFÞ½FS1�

d½E�
dt

= � kb0½E�½S0�+ ðkub0 + kEÞ½ES0�

d½F�
dt

= � kb1½F�½S1�+ ðkub1 + kFÞ½FS1�

[S0] and [S1] represent the concentrations of the unphosphorylated and phosphorylated forms of the substrate; [ES0] and [FS1] are

the concentrations of their complexes with the kinase (E) and the phosphatase (F), respectively. If we use the conservation relations

[E] = Etot – [ES0] and [F] = Ftot – [FS0], then the system can be simplified:

d½S0�
dt

= � kb0ðEtot � ½ES0�Þ½S0�+ kub0½ES0�+ kF ½FS1�
d½S1�
dt

= � kb1ðFtot � ½FS1�Þ½S1�+ kub1½FS1�+ kE ½ES0�
d½ES0�
dt

= kb0ðEtot � ½ES0�Þ½S0� � ðkub0 + kEÞ½ES0�
d½FS1�
dt

= kb1ðFtot � ½FS1�Þ½S1� � ðkub1 + kFÞ½FS1�

For typical conditions, we can make the Michaelis-Menten approximation and set:

½ES0�= kb0Etot½S0�
kub0 + kE + kb0½S0�

½FS1�= kb1Ftot½S1�
kub1 + kF + kb1½S1�
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The system can now be simplified to only two equations:

d½S0�
dt

= � kb0kEEtot½S0�
kub0 + kE + kb0½S0�+

kb1kFFtot½S1�
kub1 + kF + kb1½S1�

d½S1�
dt

= � d½S0�
dt

Clearly, [S0]+[S1] is a constant of the motion, and we can write [S0] + [S1] = Seff. This allows us to further simplify to:

d½S0�
dt

= � kb0kEEtot½S0�
kub0 + kE + kb0½S0�+

kb1kFFtotðSeff � ½S0�Þ
kub1 + kF + kb1ðSeff � ½S0�Þ

This is a one-dimensional system, and therefore cannot contain any attractors other than fixed points (Strogatz, 1994). Since all

trajectories are bounded (due to the conservation relations) the only possible long-term behavior is convergence to a stable fixed

point. In other words, limit-cycle oscillations are impossible as long as the Michaelis-Menten approximation is valid.

If the Michaelis-Menten approximation is not made, it appears that much less can be said. Using the tools of chemical reaction

network theory (CRNT) (Craciun and Feinberg, 2005, 2006; Feinberg, 1987b, 1988), the system

S0 +E%ES0/E+S1

S1 +F%FS1/F+S0

can be shown to have a deficiency of 1 and to be injective, meaning that it exhibits a single unique physically-relevant steady state

(i.e., one in which all concentrations are real and positive). A topological analysis based on CRNT is not, however, able to determine

the conditions under which this steady state might be unstable and a limit cycle might be present. By comparison, the reaction

network described in Figure 1 has a deficiency of 3 and is not injective; multistationarity cannot be ruled out on topological grounds

alone. CRNT calculations were carried out using the CRN Toolbox (http://www.che.eng.ohio-state.edu/�feinberg/crnt/).

Parameter Search
The systemwith dual phosphorylation sites is too large and complex for straightforward analytical study, so we chose to identify solu-

tions numerically through an extensive search of parameter space. Our underlying assumption is that the biological plausibility of an

emergent property (in this case, sustained oscillations) is proportional to the probability of observing this property in an ensemble of

systemswhose parameters are randomly selected. This is an approximation to the real situation, in which the existence of a biological

feature depends on its emergence via a series of random mutations, but a random search over parameter values is far more theo-

retically tractable than a random search in genotype space.

Solutions were generated by selecting parameters from an exponential distribution bounded to the interval 1-1000 min-1 for k1
through k8 and 0.01-1000 mM for Km1 through Km8. While the presence of oscillations can be determined by linearizing the system

of equations about the fixed point and determining its stability (see Stability Analysis below), in practice it was more computation-

ally efficient to simply integrate the mass-action equations and determine whether they converge to a constant value or a limit

cycle. Integration used a fourth-order stiffly-stable Rosenbrock scheme (Press, 2007). Evidence of multistability was never

observed, but multistability could not be ruled out conclusively. Integrations always began with [S00] = 104, [E] = 1, [F] = 1, and

all other concentrations set to zero; any stable attractors whose basin of attraction does not include this point would not have

been observed.

Stability Analysis
A necessary condition for the presence of sustained oscillations is that the dynamics of the system converge to a limit cycle rather

than a fixed point. The conservation relations for S, E, and F make it clear that all trajectories are bounded – if the fixed points of the

system can be shown to be unstable, motion on a higher-dimensional attractor is the only other possibility. (While chaotic motion on

a strange attractor is possible in systemswithmore than two dimensions, sustained aperiodic trajectories were not observed in any of

the parameter sets examined in this study. Once initial transients have disappeared, the system is effectively two-dimensional.) This

can be done by finding a (real, positive) set of concentration values such that all time derivatives are equal to zero and linearizing the

system about this point by calculating the Jacobian (Strogatz, 1994). If the real part of at least one eigenvalue of the Jacobian is

positive, then the fixed point is unstable. For some parameter sets, an unstable fixed point coexists with a fixed point to which all

trajectories converge, resulting in a false positive for instability (and hence oscillation) if the unstable solution is used to generate

the Jacobian. Rather than attempt to exhaustively determine the roots of the nonlinear system of equations (which can in general

be quite challenging) we observed that bona fide oscillatory regions in parameter space are often bounded by a Hopf bifurcation,

in which two complex-conjugate eigenvalues of the Jacobian cross the imaginary axis at the same time. It is not uncommon,

however, for the (positive) real parts of these eigenvalues to diverge significantly as the system moves further from the Hopf
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bifurcation. By requiring that two of the eigenvalues be greater than zero, oscillatory and nonoscillatory parameter sets could be

reliably distinguished.

Clustering and PCA Analysis
Parameter sets were categorized using quality threshold (QT) clustering (Heyer et al., 1999). Given a metric for determining the

distance between two points in parameter space, the QT algorithm finds the largest set of points such that all are within a distance

d of each other. These are then removed from consideration, and the largest cluster within the remaining collection of points is

identified. This process continues until all points have been assigned to a cluster. This process becomes rather memory-intensive

as the size of the data set to be clustered grows. A two-step process was employed for very large data sets in which the full QT

algorithm was run on an initial seed set (�10,000 points) and each of the remaining points was assigned to the closest cluster.

The results obtained by the two-step method for large data sets were qualitatively similar to those obtained by the full QT method

for smaller data sets.

The distance metric was designed to take several factors into account. First, because the parameters were exponentially distrib-

uted in the randomsearch, the distancemetric was calculated on the logarithms of parameters. This ensures that (for example) a point

with k1 = 900 and a point with k1 = 1000 are more similar than a point with k1 = 1 and a point with k1 = 101. In Figure 1B, the essential

features of the reaction network are unchanged if S10 and S01 are exchanged. Thismeans that, for any two points in parameter space,

two possible distances between them exist, of which the shortest was chosen. Lastly, the rate constants {ki} have units of inverse

time, and rescaling {ki} by a constant factor has no effect on the resulting dynamics except for the rescaling of the time axis. Therefore,

when each pairwise distance was calculated, rate constants were rescaled to minimize the distance metric. These measures ensure

that large distances between parameter sets will correspond to major differences in the oscillatory dynamics.

The choice of cluster diameter is somewhat arbitrary; two major clusters emerged for a range of cluster diameters and a diameter

was chosen at which these two clusters accounted for �70% of solutions (Figure 2B; Figure S2A). Each cluster was ‘‘aligned’’ by

identifying the cluster member with the shortest average distance to others in the cluster and choosing the symmetry orientation

of each cluster that minimizes the distance to this reference member. The parameter distributions in aligned clusters can then be

calculated; representative histograms for the major clusters are shown in Figure 2C.

The remaining small clusters (�30% of the total) are generally similar either to Cluster 1 or Cluster 2; if all parameter sets assigned

to neither Cluster 1 nor Cluster 2 are grouped together, their parameter distribution is similar to Cluster 1 or Cluster 2. For example,

Figure S2B shows both Cluster-2-type characteristics (high k3, k6, low k4, k5, low Km1, Km8) and Cluster-1-type characteristics (high

k1, k8, low k2, k7, low Km4, Km5). To a first approximation, therefore, solutions can be categorized as being similar to either Cluster 1 or

Cluster 2.

The presence of two distinct oscillatory clusters in parameter space can also be confirmed using principal components analysis

(PCA). If a covariance matrix is constructed from the logarithms of the oscillatory parameter values and normalized so that each

column has zero mean and unit variance, the eigenvalues of this matrix can be used to reduce the dimensionality of parameter space

by projecting it down onto the (orthogonal) directions that contain the largest share of the sample variance.When a random sample of

oscillatory parameter sets is projected down onto the first two principal components (which together account for about 30% of the

variance), two distinct clusters are visible, separated by an empty space (Figures S2C and S2D). Identifying the points on the PCA

projection according to the cluster to which they were assigned by the QT algorithm makes it clear that Cluster 1 and Cluster 2 are

qualitatively distinct and that no other major groupings are present.

Detailed Analysis of Oscillation Mechanism
(See ‘‘Period- and Amplitude-Determining Processes’’ in Results section.)

Figure 4B divides the oscillation cycle of a typical Cluster 1 oscillator into two phases: one involves the net conversion of S10 to S01

(via S00) and is shown against a white background; the other involves the conversion of S01 back to S10 via S11 and is shown against

a shaded background. The system is clearly symmetric (in the left side of Figure 4B) – the two phases look identical if S10 and S00 are

exchanged with S01 and S11, respectively. In addition, the sequestration patterns of the kinase and phosphatase (lower two panels)

have identical shapes, except for a 12 hr phase shift – both enzymes spend most of their time bound to a single substrate and asso-

ciate with other binding partners only during brief antiphasic episodes.

At the beginning of the S01/S11/S10 phase (colored background), S01 is highly abundant and saturates the phosphatase almost

completely, rendering it nearly inactive. Because S01 is the only highly abundant species at this point, it also binds most of the kinase,

despite the fairly low affinity of the kinase for S01. Unlike the phosphatase, the kinase reacts efficiently when bound to S01, causing S01

to be converted to S11 at a respectable rate. As S11 accumulates, some of it is converted to very small amounts of S10 –initially S10 is

hardly visible in the top panel (bulk protein concentrations), but the affinity of the kinase for S10 is so high that it still rapidly sequesters

most of the kinase away from S01. Once the kinase sequestration by S10 saturates (at around the middle of this phase), the depletion

of S01 slows substantially. Once the levels of S01 have nearly reached zero, something interesting finally happens with the phospha-

tase. After spending nearly all of this phase bound unproductively to S01, it is finally free to seek other partners; the most viable

candidate is S11, now the most abundant species in the system. The association of phosphatase and S11 is, however, destined to

be short-lived, as S11 is precipitously converted to S10, completing the net conversion of S01 to S10.
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The S10/S00/S01 phase follows precisely the same pattern. Initially, both the kinase and the phosphatase are bound primarily by

the highly-abundant S10. The S10/S11 reaction is inefficient, so the kinase remains unproductively bound to S10 throughmost of this

phase. The phosphatase, however, rapidly converts S10 to S00. With the abundant but unattractive S10 out of the picture, the phos-

phatase can then bind almost exclusively to the trace amounts of S01 that have begun to appear, rendering it nearly-inactive for the

rest of this phase. This causes the rate of the S10/S00 conversion to slow substantially, with the slow decline of S10 effectively deter-

mining the length of this phase. Once it has disappeared completely, the kinase has nowhere to turn except for the now-abundant

S00, which is rapidly consumed to produce S01. Once S01 again becomes the dominant species in the system, the cycle is ready to

begin anew.

In the right panel, the symmetry of the system is broken by halving the rate of the S01/S11 conversion. The concentration traces in

the S10/S00/S01 phase (white background) are nearly identical to the symmetric case, indicating that this particular reaction has

a minimal impact on this phase. The S01/S11/S10 phase (colored background), on the other hand, nearly doubles in length. Close

examination shows that the shape of the transition in phosphatase binding near the end of this phase is unchanged – most of the

lengthening comes from an extension of the S01/S11 conversion. This explains the large impact of this parameter on the oscillation

period – the phosphatase-catalyzed steps all wait for the sequestration by S01 to be lifted, so changes that slow down the depletion of

S01 will impact the period much more than changes that affect the more transient reactions.

Detailed Discussion of Bifurcations
(See ‘‘Period- and Amplitude-Determining Processes’’ in Results section).

Determining the precise nature of bifurcations in a complex dynamical systemcan sometimes be challenging, and our identification

of the bifurcations illustrated in Figure 4A as Hopf bifurcations is based solely on numerical evidence. In each case, the nature of the

bifurcations was determined by observing the behavior of the eigenvalues of the Jacobian at the fixed point as parameter valueswere

varied. The symmetric reference parameter set for Cluster 1 (see Table S1) shows two nondegenerate, positive, real eigenvalues. As

the bifurcation point is approached, these two eigenvalues approach each other and real the imaginary axis, so that they become

complex conjugates with positive real parts. At the bifurcation point, these two eigenvalues simultaneously cross the imaginary

axis, the typical signature of a Hopf bifurcation. Additional evidence comes from the scaling of the oscillation period with r, where

r is the distance from the bifurcation point.While the period can vary dramatically with parameter changes, it tends to remain constant

as r becomes very small, another typical feature of Hopf bifurcations. Finally, the amplitudes of oscillations typically decrease as r1/2

as the bifurcation point is approached. This can be demonstrated for the Km4 bifurcation shown on the right-hand side of Figure 4A,

and for many of the other bifurcations shown in Figure S4. Unfortunately, this characteristic was observed in neither the k3 bifurcation

shown in Figure 4A nor the similar k1/k8 bifurcations for Cluster 2.

Determining the Typical Robustness of Oscillation to Parameter Changes
(See ‘‘Period- and Amplitude-Determining Processes’’ in Results section).

In addition to detailed analysis of a few example cases, one can also use bifurcation analysis to examine the robustness of a larger

collection of parameter sets. We chose �1000 parameter sets each from Cluster 1 and Cluster 2 and determined the range over

which each parameter could be varied before oscillations were lost. Figure S4B shows the average oscillatory ranges for the two

major clusters. Because we only examined bifurcations lying between 10�3 and 104, these are conservative estimates; Figures 4A

andS4 suggest that parameters can sometimes be varied far outside this rangewithout affecting oscillations. On average, the param-

eters of Cluster 1 oscillators can tolerate about 1000-fold variation before oscillations are lost; Cluster 2 oscillators are slightly less

robust and can tolerate roughly 800-fold variation.

Sensitivity of the PTO Period to Total Substrate Concentration
(See ‘‘Period- and Amplitude-Determining Processes’’ in Results section.)

Close examination of the bifurcation diagram for Stot (Figure S4A) raises an important concern that should be addressed. While

oscillations are lost for Stot ( 3; there is no upper bound to the oscillatory regime. For Stot[ 3, the period is almost exactly linear

in the Stot/Etot ratio (or, equivalently, Stot/Ftot). Adjusting this ratio amounts to rescaling the time axis of the simulations; all steps of

the oscillation cycle are equally affected. When the substrate/enzyme ratio is large, enzymes will be operating near saturation,

meaning that all catalytic rates are roughly equal to the product of substrate and enzyme concentrations, and a change will affect

all reactions equally. Near the bifurcation point, enzymes are no longer saturated and this relationship breaks down.

The period of the circadian clock has been shown to be largely insensitive to the global rate of mRNA transcription (Dibner et al.,

2009). Is this robustness captured in our simple model? If transcriptional repression decreases the concentrations of substrate,

kinase, and phosphatase by the same factor, then the dynamics of the oscillator will be completely unchanged. Some studies

(Coté and Brody, 1986), however, indicate that the circadian period may also be insensitive to a selective change in the expression

level of PER, a major phosphorylation target of CKIε/d and the most likely circadian analog to the substrate in our model system.

This difficulty can be avoided if the effective substrate/enzyme ratio is kept at a constant level regardless of the total expression

level of each substrate and enzyme. For example, subcellular compartmentalization could be dependent on the formation of a tightly

bound complex between enzymes and substrates – if a ‘‘date’’ is required for admission, then stoichiometry will be well-controlled. In
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the circadian system, localization of PER to the nucleus requires participation in a multisubunit complex, often including CKIε/d and

phosphatase (Lee et al., 2001).

Stochastic Effects on the Stability and Period of PTO
(See ‘‘Robustness of the Oscillation Period against Stochastic Fluctuations’’ in Results section).

To get a sense of whether the results depicted in Figure 5 are typical of Clusters 1 and 2 more generally, we used the stochastic

simulation algorithm (SSA) to estimate what fraction of oscillators remain viable as the number of enzymes is decreased; roughly 10%

remain oscillatory even with only one of each type of enzyme present (Figure S5C). In this sense, Cluster 1 is slightly more robust than

Cluster 2, although the differences are small. Interestingly, the two clusters show opposing behaviors as molecular noise becomes

more pronounced – the period of Cluster 1 oscillators tends to increase, while that of Cluster 2 oscillators tends to decrease

(Figure S5D).

Biological Significance of the Tunable Period Length
The bifurcation diagram for k3 in Figure 4Amakes it clear that a wide range of periods are available in certain parameter regimes. This

implies the presence of broadly-applicable design features that might apply both in the circadian field and other oscillatory systems

with shorter or longer time scales. Comparisonwith the bifurcation diagrams shown in Figure S4 shows that, for most parameters, the

period variation in the vicinity of the reference parameter set is rather modest – an oscillator based on this scheme is likely to be

reasonably mutationally robust. Although tuning of the oscillation period is possible (and likely to be desirable) on evolutionary time-

scales, Figure 5A shows that the periods of individual oscillators are likely to be fairly consistent, even in the presence of stochastic

noise. These features are consistent with the current understanding of circadian rhythmicity: the (mammalian) circadian clock is

robust against temperature (Hastings and Sweeney, 1957; Pittendrigh, 1954) and global transcription rate (Dibner et al., 2009),

but changes in the activity of CKIε/d are a fragile point (Gallego and Virshup, 2007; Isojima et al., 2009; Lee et al., 2009). CKI-catalyzed

reactions likely play a period-determining role similar to that of the reactions with rates k3 and k6 in our much simpler system.

Calculating Temperature Sensitivity
For biochemical reactions, temperature sensitivity is often described using the temperature coefficient Q10:

Q10 =

�
R2

R1

�10=T2�T1
;

where R1 and R2 are the rates of a process at temperatures T1 and T2. If Q10 = 2, the reaction rate doubles over an interval of 10

degrees. Note that, if a reaction has a constantQ10, its rate will depend exponentially on the temperature. If the reaction rate is scaled

such that R2 = aR1, the rescaling constant can be expressed as a=Q
DT=10
10 .

Rather than explicitly estimating activation energies, the effects of temperature were introduced by assuming Q10 values for the

kinase and the phosphatase (Q10
(E) and Q10

(F)) and using these to calculate rescaling factors aE and aF at a given temperature differ-

ence DT. The resulting changes in the oscillation period t(DT) could usually be fit very well with an exponential curve of the form

t = t0e
bDT . The temperature coefficient of the entire cycle can then be expressed as:

Q
ðcycleÞ
10 =

�
R2

R1

�10=DT
=

�
t1
t2

�10=DT
= e

�bDT 10=DT = e�10b

For a given parameter set, the rate constants were rescaled for nine points evenly spaced along a temperature range of ± 5�, the
period was calculated for each temperature point, and an exponential fit was used to obtain Q10

(cycle). Binding-unbinding reactions

had aminor impact on temperature sensitivity; we assumed a fairly highQ10 value of 3.0.Most fitswere of excellent quality; thosewith

R2 < 0.9 were discarded (Figures S6A–S6C).

Detailed Explanation of Temperature Compensation
(See ‘‘The Period of a Simple PTO Can Be Temperature Compensated’’ in Results section.)

Bona fide circadian clocks involvemore thanmerely autonomous oscillations. A cellular rhythm is generally not considered a circa-

dian clock unless it also exhibits temperature compensation, in which the oscillation period is roughly unchanged by the ambient

temperature. The temperature sensitivity of a system is often described using the temperature coefficient Q10, which describes

the factor by which the temperature changes as the temperature is raised by 10�C. Most biochemical reactions have a Q10 value

of 2-3, meaning that their rates increase between two and three times in response to a 10�C temperature change. For a tempera-

ture-compensated process, Q10 y 1; measured Q10 values for circadian clocks range from about 0.8 to 1.4 (Dunlap et al., 2004).

To further deepen the analogy between our simple model system and the circadian clock, we examined its potential for temper-

ature compensation. This was done by assuming temperature coefficients Q10
(E) for the kinase and Q10

(F) for the phosphatase, and

using these to modify rate constants in accordance with an assumed external temperature (see Experimental Procedures; Figures

S6A and S6B).
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It is obvious that if Q10
(E) = Q10

(F) = 2, every reaction rate in the simple PTO is doubled when the temperature changes by 10�C.
In that case, the period is cut in half and temperature compensation is impossible; equal Q10 values only permit temperature

compensation if both are equal to one. Because we are most interested in the potential behavior of systems with temperature-

insensitive kinases such as CKIε/d, we have generally assumed Q10
(E) = 1. Of course it is entirely possible that Q10

(F) = 1, and this

would provide a very elegant mechanism for temperature compensation. For the sake of generality, however, we consider the

case inwhichQ10
(F) = 3, and askwhether temperature compensation is possible even in the presence of a fairly temperature-sensitive

phosphatase.

The distribution of Q10
(cycle), the temperature coefficient of the oscillation period was calculated as shown in Figure 6A: Q10

(cycle)

calculations were attempted for �5 3 106 oscillating parameter sets. Many parameter sets show oscillations that are robust to

temperature change, while most were unsuccessful. The systematic changes in enzyme reaction rates (induced by temperature

differences) can involve fairly significant motion in parameter space, often bringing the system outside the oscillatory regime. For

Q10
(E) = 1 and Q10

(F) = 3, Q10
(cycle) could be calculated for �106 parameter sets. In general, larger values of Q10

(E) and Q10
(F) cause

the peak of Q10
(cycle) to be shifted to higher values, and the width of the Q10

(cycle) distribution increases as the difference between

Q10
(E) andQ10

(F) increases (Figures 6B and S6C). It is possible for the oscillation period to be temperature compensated or even over-

compensated as long as Q10
(E) s Q10

(F); the probability of temperature compensation increases when values of Q10
(E) or Q10

(F) is

close to 1.

We next sought to determine whether temperature-compensated oscillators share characteristic parameter distributions. For the

case with Q10
(E) = 1 and Q10

(F) = 3 (i.e., a temperature-insensitive kinase and a temperature-sensitive phosphatase), the collection of

parameter sets was sorted according to their calculated Q10
(cycle) values and separated into five groups numbered from G1 (most

overcompensated; period increases with increasing temperature) to G5 (most undercompensated; period decreases with increasing

temperature) (Figure 6C). Parameter distributions similar to those in Figure 2C could then be calculated for each group. A few repre-

sentative traces are shown in Figure 6D; see also Figures S6D and S6E. The parameter distributions vary smoothly fromG1 to G5 and

show a striking symmetry property: the G1 distributions are nearly identical to the G5 distributions upon an exchange of S00 and S11

(reversing the roles of the kinase and phosphatase).

Figure 6E distills these parameter distributions into a schematic form. In the undercompensated case (G5), the fastest reactions in

the system are the kinase-driven forward reactions (S00/S01/S11), while the phosphatase-driven reactions (S11/S10/S00) are

slower and nearly irreversible. The temperature-insensitive kinase reactions have a negligible impact on the period, while the temper-

ature-sensitive phosphatase steps are rate-limiting, leading to overall strong temperature dependence. In addition, Km8 is typically

lower than Km6 in G5; this means that the phosphatase often will not bind to S10 until S11 has been largely depleted, introducing an

additional sequestration that favors temporal ordering of the slow phosphatase steps. Km1, however, is not typically lower than Km3,

so the fast kinase steps tend to happen concurrently. In the overcompensated G1 case, the opposite is true. The temperature-insen-

sitive kinase reactions are slow, irreversible, and temporally-ordered, giving them a disproportionate impact on the period, while the

temperature-sensitive phosphatase steps are fast and concurrent, and have little effect on the period. It should be stressed that over-

compensation is probably not due to an excessive period dependence on the temperature-insensitive kinase reactions; if the period

depended only on these reactions then the cycle would be perfectly compensated.

Both overcompensation and extreme undercompensation (i.e., Q10
(cycle) > Q10

(F)) can best be understood by examining the bifur-

cation diagrams in Figures 4B and S4. If the system is near a bifurcation point, then small changes in parameters can result in large

period changes. The fact that �80% of Q10
(cycle) calculations failed suggests that a large fraction of the randomly-discovered oscil-

lators are near the edge of the oscillatory regime. This is a consequence of the geometry of high-dimensional space: only�19%of the

area of a two-dimensional circle is locatedwithin 10%of its edge, while�81%of the volume of a 16-dimensional ball is located within

10%of its boundary. The oscillatory parameter regime is likely to be nonspherical, further increasing the fraction of its volume located

close to a boundary. This intuition is supported by the fact that most of the oscillators with extremeQ10
(cycle) values also showed very

small oscillation amplitudes, as is often true near bifurcations. Most of the tails of the distribution can be attributed to low-amplitude,

marginally-stable oscillators. We would therefore expect a viable temperature-insensitive oscillator to be one in which the temper-

ature-insensitive steps are rate-limiting (as described above) and the system is located far from the boundaries of the oscillatory

regime, so that amplitudes remain large and undercompensation is avoided.

Temperature compensation can also be observed in stochastic simulations. The Q10
(cycle) values obtained from deterministic

calculations are not always valid in the stochastic case, because system size can affect the oscillation period (Figure 5A). A system-

atic search revealed several parameter sets for which stochastic simulations are nearly temperature-insensitive; one example is

shown in Figure 6F (see Table S3). In this calculation, S00 and S10 are present only in very brief spikes, consistent with fast reactions.

Most of the time in the cycle is taken up by the slow, nearly-irreversible S01/S11 conversion, which is catalyzed by the temperature-

insensitive kinase.

In summary, precise temperature compensation may not be particularly common, but it is certainly possible. Roughly 3.4% of

oscillators show a Q10 value between 0.9 and 1.1. Most importantly, temperature compensation does not require highly unusual

parameter values or modified network topologies. Instead, a range of temperature sensitivities is possible, and temperature insen-

sitivity occupies an intermediate position in this range. To ensure temperature compensation, the temperature-insensitive steps

should be rate-limiting – this is realized through slow, irreversible reactions and a tendency toward temporal ordering through differ-

ential binding constants. Interestingly, the phosphorylation of PERs by CKIε/d is apparently a rate-determining reaction in the
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mammalian circadian clock and is temperature insensitive when PER-derived peptide is used as a substrate in vitro (Isojima et al.,

2009).

Detailed Discussion of Other Posttranslational Oscillator Models
(See ‘‘Comparison with Other PTO Models’’ in the Discussion section.)

Several models have been described for bistability and oscillations in the MAPK system, and our system exhibits important simi-

larities and differences with these. For example, Markevich et al. (2004) describe a single level of a MAPK cascade, in which a single

kinase (MAPKK) and a single phosphatase (MKP) catalyze the interconversions of MAPK enzymes with zero, one, or two phosphate

modifications. The most important difference between this scheme and the one described here is that MAPK models (following the

original formulation by Huang and Ferrell (Huang and Ferrell, 1996)), typically do not distinguish between the two possible singly-

phosphorylated forms of MAPK, assuming instead that phosphorylation follows a strict ordering. Interestingly, Markevich et al.

describe a pair of feed-forward inhibition motifs that look strikingly similar to those presented in Figure 2. Unless a distinction is

made between the two singly-phosphorylated states, however, a directional rate bias (our first designmotif) is not possible, and oscil-

lations are not observed. Several studies have observed that, while bistability is possible within a single level of the cascade, feed-

back loops in amultilevel system are typically required for oscillations (Chickarmane et al., 2007; Kholodenko, 2000; Shankaran et al.,

2009). Liu and coworkers (Liu et al., 2011) have shown that oscillations can be generated in a similar strictly-ordered two-site phos-

phorylation system with implicit feedback similar to the enzyme sequestration observed in our study, with the major difference that

their system requires a fourth component (in addition to oscillating substrate, kinase, and phosphatase) that is actively produced and

degraded (Liu et al., 2011).

Another essential difference between our study and the various MAPK models in the literature is that these models are all in-

tended as descriptions of an experimentally-characterized system and therefore have access to parameters that have been (at

least approximately) experimentally-determined. For example, Qiao and co-workers (Qiao et al., 2007) used a Monte Carlo param-

eter search similar to ours to classify the dynamical behaviors available in the complete MAPK cascade system, with no explicit

feedback between the MAPK level and the MAPKKK level. By sampling 2 3 105 exponentially-distributed parameter sets, they

were able to determine the relative frequencies of single-valued, hysteretic, and oscillatory input-output relationships. In contrast

to our approach, however, in which parameter values were selected from a range covering several orders of magnitude, their

parameter values were selected to be within 25-fold of the experimentally estimated values, meaning that they characterized

the behaviors present within a reasonable neighborhood in parameter space. Our approach, in contrast, has been to sample

the parameter space as completely as possible and analyze the resulting parameter combinations to determine which regions

harbor interesting dynamical behaviors.

Our model can also be compared fruitfully to various models that exist for the in vitro reconstitution of the cyanobacterial circadian

clock. Van Zon et al. (van Zon et al., 2007) describe a model in which each monomer in a KaiC hexamer can be either phosphorylated

or unphosphorylated, and the ring as a whole is in either an active state (favoring phosphorylation) or an inactive state (favoring

dephosphorylation). Highly-phosphorylated hexamers easily become inactivated and weakly-phosphorylated hexamers tend to

become activated, leading to a preferred ordering of the system’s states (our first design motif). The population of single-hexamer

oscillators is synchronized through the action of KaiA, which is assumed to bind most strongly to weakly-phosphorylated hexamers,

promoting phosphorylation (they refer to this mechanism as ‘‘differential affinity’’). This leads to a situation similar to our sequestra-

tion-based synchronization – the hexamers that are ahead of the pack are less successful in competing for KaiA and will tend to slow

down, while the laggards will tend to speed up. The supplementary information of their study formulates differential affinity in very

general terms that are easily applicable to our system.

The circadian clock model of Van Zon and co-workers also discusses a hypothesis for temperature compensation that has impor-

tant similarities to ours. They begin with the assumption that the various (de)phosphorylation rates are all temperature-insensitive,

while other factors (such as binding/unbinding and enzyme/substrate affinities) may be temperature sensitive. In order for the system

as a whole to remain temperature-compensated, the temperature-insensitive steps must be rate limiting; from this observation they

infer requirements that the (un)binding and conformational change rates should be much faster than the catalytic rates and that affin-

ities between the Kai proteins should be high enough that binding is typically saturated. A more detailed study of temperature

compensation in the KaiABC systemwas presented by Hatakeyama and Kaneko, who argued that temperature compensation could

be achieved (even if individual reactions are temperature-sensitive) as long as reaction rates are limited by an enzyme that is shared

across several reactions (Hatakeyama and Kaneko, 2012).

In our study, we assumed only that the kinase was temperature-insensitive, and examined conditions under which temperature

compensation can still be achieved with a temperature-sensitive phosphatase. This complicates the picture substantially, but the

requirement of nearly-saturated binding and fast noncatalytic processes is consistent with our results.

Another approach to the modeling of the cyanobacterial circadian clock is illustrated by Clodong and co-workers (Clodong et al.,

2007), who began with a loop topology similar to the one used by van Zon et al., except that the distinction between active and inac-

tive conformations is replaced by a distinction between KaiC hexamers without KaiB (which will tend to be phosphorylated) and

KaiBC complexes which will tend to be dephosphorylated. They then used a ‘‘rewiring’’ algorithm to add additional positive or nega-

tive regulatory connections to this loop topology. The topology that generated the highest-amplitude, most robust oscillations did so

using a feed-forward inhibition synchronization scheme similar to ours, in which KaiBC complexes with low phosphorylation number
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inhibit the phosphorylation of KaiC complexes. This can be accomplished if KaiA binds strongly to low-phosphorylated KaiBC

complexes, making it unavailable to promote the phosphorylation of the KaiC hexamers.

The model of Rust et al. (Rust et al., 2007) describes a two-site system similar to ours, in which the two phosphorylation states of

the substrate (KaiC) have distinct roles. Several differences exist in the detailed implementation, however – their model lacks a sepa-

rate phosphatase (relying instead on the autophosphatase activity of KaiC) and the autokinase activity of KaiC is modulated by the

activities of the regulatory proteins KaiA and KaiB. KaiA promotes the preferential phosphorylation of KaiC on T432 (KaiC-T), followed

by phosphorylation on S431 (KaiC-ST); the phosphorylation on S431 to form KaiC-S is slower, and its dephosphorylation from KaiC-

ST is inhibited by KaiA. Once low levels of KaiC-S do form, however, they recruit KaiB, which inhibits the activity of KaiA. In this way,

KaiC-S indirectly catalyzes its own formation, as well as inhibiting the formation of KaiC-T and KaiC-ST. Similarities to our model exist

in the general principles of kinetic bias (i.e., T432 is phosphorylated more quickly than S431) and synchronization by feedforward

inhibition, although the molecular details are quite different.

The various cyanobacterial clock models show differences among themselves, but the basic design principles identified in this

study can be discerned in each. In all cases, a kinetic bias (sometimes enforced by the presence or absence of KaiB or by an active

or inactive conformational state of KaiC) is used to give states a temporal ordering, consistent with our first design motif. In addition,

all of the models described involve some variation on the theme of synchronization by feedforward inhibition, with high concentra-

tions of a particular phosphorylation state inhibiting the progress of reactions that are a few steps ahead in the cycle. The most

striking difference lies in the physical system – cyanobacterial clock models focus on a specific biochemical system and their param-

eter choices are guided by experimental evidence, while our model focuses on a very generic system and design elements were

discovered via a broad, unconstrained parameter search. Most importantly, our results demonstrate that these design principles

are not a result of specific features of the KaiABC system (such as auto(de)phosphorylation activity, multimeric arrangement of

substrates, or competitive regulation) but that they also appear in a much more general context.

More General Formulation of Design Principles
(See ‘‘General Applicability of a Design Principle Composed of Two Design Motifs’’ in Discussion section.)

The general design principles uncovered in this study can also be applied to situations in which more than two phosphorylation

sites are present (Figure 7B). Suppose that a protein has n phosphorylation sites. Out of the 2n possible phosphorylation states,

a subsequence of k% 2n states exists such that the rate constants in the system predispose individual substrates to visit these states

in the order S1,S2,..,Sk,S1,S2,.. This is equivalent to our first designmotif. Enzyme sequestration requires that some phosphorylation

state Sj binds strongly and sequesters the enzyme that catalyzes the downstream reaction Sk/Sk+1, where k > j. This might also be

the same enzyme that catalyzes Sj/Sj+1, as in the case of our Cluster 2, where (Sj,Sk,Sk+1) corresponds to (S00,S01,S11) or

(S11,S10,S00). Alternatively, it may be a different enzyme, as in the case of Cluster 1, where (Sj,Sk,Sk+1) corresponds to

(S01,S11,S10) or (S10,S00,S01). It is not necessary that the system have only one type of kinase and one type of phosphatase, as

long as these conditions for enzyme competition are present. As can be seen from the examples developed in this study, oscillations

will be most robust when several overlapping modules exist. Geometric considerations (Manrai and Gunawardena, 2008;

Thomson and Gunawardena, 2009) have shown that competition for enzyme between different substrate phosphorylation states

can lead to multistability in multisite phosphorylation systems; our results lead one to imagine the presence of higher-dimensional

attractors as well.

We have described the model as a phosphorylation system because our initial interest in this system was motivated by the prev-

alence of multisite phosphorylation in circadian systems. However, we note that the samemathematical framework could be applied

to any type of multisite posttranslational modification such as methylation or acetylation.

Compatibility of PTO with TTO
While the system presented in this paper would be an adequate model of an in vitro experiment, realization in cellulo would require

the inclusion of transcription, translation, and degradation. Accounting for these processes would complicate the model substan-

tially and is beyond the scope of this paper, but a few comments are in order. Figure 1B suggests that the system can be

abstracted into two processes – one is a production of S11 from S00 (with S01 as an intermediate), and the other is the disappear-

ance of S11 and reappearance of S00. In our model, the second process is accomplished by phosphatase-catalyzed steps. This

could also easily be accomplished by a transcriptional-translational loop in which S11 is degraded and acts as a transcriptional

repressor of the gene encoding the substrate. The newly-translated substrate will be unphosphorylated, so this scheme includes

the necessary ingredients of S00 appearance, S11 disappearance, and coupling between these two processes (Figure 7C). In this

case, the presence of the phosphatase-catalyzed pathway from S11 to S00 is superfluous, and its function can be replaced by

degradation of S11 and synthesis of S00. Thus, our PTO model can easily be generalized to a TTO model, and many of the

same considerations will apply.

This scheme is somewhat analogous to the current canonical model of the circadian clock in various organisms. Typically, the

substrates that are phosphorylated at multiple sites and degraded upon progressive phosphorylation are also involved in the core

negative feedback loop – PER in fly and mammals, and FRQ in fungi (Dibner et al., 2010; Dunlap, 1999; Reppert and Weaver,

2002; Takahashi et al., 2008; Young and Kay, 2001). These proteins directly or indirectly repress their own transcription (Aronson

et al., 1994; Darlington et al., 1998; Kume et al., 1999), though it should be noted that the repressor activity of mammalian PER seems
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to be relatively weak (Sangoram et al., 1998) and both mammalian PER and fungi FRQ can act as positive regulators under some

circumstances (Lee et al., 2000; Ogawa et al., 2011; Shearman et al., 2000). Multi-site phosphorylation, followed by degradation,

may also be experienced by these proteins (Baker et al., 2009; Chiu et al., 2011; Shanware et al., 2011; Tang et al., 2009; Vanselow

et al., 2006). The PTOoscillator presented in this paper is thus likely to be compatible with well-characterized TTO systems, and some

of the same design principles may apply.
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Figure S1. PTO Model with Shared Intermediate Complexes at Branching Reactions, Related to Figure 1

(A) PTO reaction network.

(B) In the model described in the main text, it was assumed that branching reactions (e.g., the conversion of S00 to either S01 or S10) involved two

distinct intermediates (e.g., ES00a for conversion to S01 and ES00b for conversion to S10). In the alternative approach shown here, branching reactions can

proceed from a single complex ES00, leading to either S01 or S10. Results from calculations with this assumption are qualitatively similar to the model shown in

Figures 1B and 1C.
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Figure S2. Clustering of Oscillatory Parameter Sets, Related to Figure 2

(A) Results of QT clustering with various clustering diameters.

(B) Parameter histograms obtained when all solutions not assigned to clusters 1 and 2 were pooled together.

(C) PCA of the random parameter search results. The first few principal components capture a reasonably large fraction of the variance.

(D) Projection of 10,000 parameter sets onto their first two principal components. Points are color-coded according to the clusters assigned using the QT

algorithm. PCA is able to identify cluster 1 fairly clearly, and a clear separation exists between cluster 1 and the remaining parameter sets. No other major

groupings are apparent.
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a limit cycle. Red vertical lines denote the parameter value in the symmetric example set; see Table S1 for precise values.

(B) Oscillation ranges for parameter sets in clusters 1 and 2. Bifurcations were sought between 10�3 and 104 for �1,000 parameter sets in each cluster; the

colored bars represent the average ranges over which each parameter can be varied without abolishing oscillations.
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Figure S5. Stochastic Simulation of a Stereotypical Cluster 2 Oscillator, Related to Figure 5

(A) Effects of system size on the oscillation period. Oscillations were not observed for <20 enzymemolecules. Once they appear, the oscillations are quite robust

and the period rapidly converges on the bulk average value.

(B) Top row: Plots of the bulk population obtained in stochastic stimulations for the cluster 2 oscillator. Middle row: Smoothed traces showing the probability that

a single (arbitrarily chosen) substrate molecule will occupy different phosphorylation states as a function of time. Bottom row: Results for 100 individually tracked

molecules, each shown as a horizontal raster line, color-coded as in the plots above.

(C) Fraction of parameter sets in clusters 1 and 2 that remain oscillatory as the system size is decreased. Even if only one of each type of enzyme is present,

roughly 10% of parameter sets in each cluster remain robust against stochastic noise.

(D) Systematic changes in oscillator period with stochastic noise. As the system size is decreased (i.e., stochastic noise increases), cluster 1 oscillators tend to

slow down (see also Figure 5A), whereas cluster 2 oscillators tend to speed up.
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Figure S6. Dependence of Temperature Sensitivity on Parameter Distributions, Related to Figure 6

(A andB)Quality of the exponential fit for the calculated period at varying temperatures.Most fits are of excellent quality, regardless of the values ofQ10
(E) andQ10

(F)

(A), whereas poorly fit parameter sets tend to show a cycle Q10 close to 1.0 (B).

(C) Histogram of cycle Q10 values when the poorly fit parameter sets (R2 < 0.9) are included.

(D) Changes in parameter distributions as a function of temperature overcompensation or undercompensation. Histogram traces are color-coded as in Figure 6C.

(E) The same histograms as in (D), organized by group rather than by parameter.
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