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The 103,200-arm acceleration dataset in the UK Biobank
revealed a landscape of human sleep phenotypes
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Human sleep phenotypes can be defined and diversified by both genetic and envi-
ronmental factors. However, some sleep phenotypes are difficult to evaluate without
long-term, precise sleep monitoring, for which simple yet accurate sleep measure-
ment is required. To solve this problem, we recently developed a state-of-the-art
sleep/wake classification algorithm based on wristband-type accelerometers, termed
ACCEL (acceleration-based classification and estimation of long-term sleep-wake cy-
cles). In this study, we optimized and applied ACCEL to large-scale analysis of human
sleep phenotypes. The clustering of an about 100,000-arm acceleration dataset in
the UK Biobank using uniform manifold approximation and projection (UMAP)
dimension reduction and density-based spatial clustering of applications with noise
(DBSCAN) clustering methods identified 16 sleep phenotypes, including those related
to social jet lag, chronotypes (“morning/night person”), and seven different insomnia-
like phenotypes. Considering the complex relationship between sleep disorders and
other psychiatric disorders, these unbiased and comprehensive analyses of sleep phe-
notypes in humans will not only contribute to the advancement of biomedical research
on genetic and environmental factors underlying human sleep patterns but also, allow
for the development of better digital biomarkers for psychiatric disorders.

sleep | sleep landscape | clustering | UMAP | insomnia

Scientific and technological advancements often provide a landscape of our world and
shape new ways to understand it. In the life sciences over the past 20 y, from the analysis
of the whole human genome to the development of next generation sequencing, the
landscape of genome science has changed dramatically (1–4). In fact, there have been
many sustained efforts to understand the genetic landscape of diseases such as cancer,
neurodegenerative diseases, and psychiatric disorders by conducting large-scale genome-
wide association studies and comprehensive analyses of genetic variants (5, 6). In recent
years, the trend of big data analysis has been moving toward a future where in-depth
genetic analysis is combined with rich phenotype analysis (7). In this context, large-scale
analysis of human phenotypes that considers both genetic as well as environmental factors
will be important for gaining a deeper understanding of the topics of investigation.

Sleep is a physiological phenomenon that is widely conserved throughout the animal
kingdom. Its basic structure is genetically conserved within species—humans are no
exception to this. However, this structure can change either transiently or chronically
depending on environmental factors (8). This effect of environmental factors on sleep
can be observed in terms of the diversification of modern lifestyles. Humans are basically
diurnal animals that are active during the day and sleep at night, but the widespread use
of electricity has freed us from this constraint. It is also possible to temporarily affect
wakefulness or sleep, as a way to resist genetically predetermined sleep times, through the
intake of substances such as caffeine or alcohol. The way we work has also diversified
as shift work and other types of work schedules have become more popular (8, 9).
However, there are health trade-offs to this diversification of sleep schedules. For example,
a night person tends to have less sleep on weekdays (10, 11), probably due to the social
obligation of attending school or work in the morning. This might be associated with
poorer concentration and academic/professional performance in the morning in such
individuals (12). This leads to the concept of “social jet lag,” representing the difference
in sleep duration between weekdays and weekends or holidays, which is a concern due
to the potential for adverse health effects (13, 14). The diverse sleep phenotypes are
not independent of mortality risks from chronic diseases such as cardiovascular disease,
metabolic syndrome, and diabetes, although the complex relationships between them
remain poorly understood (15).

The major effects of sleep shortage include physical effects (drowsiness, fatigue, and
high blood pressure), cognitive impairment (decreased performance, attention, motiva-
tion, mental focus, and intellectual capacity), immune system dysfunction, and possible
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complications related to mental illnesses (16); 60 to 70% of adults
are known to have sleep-related anxiety/problems, some of which
are defined as sleep disorders (17). For example, hypersomnia is
characterized by significant daytime sleepiness despite sufficient
sleep at night (18). Circadian rhythm sleep disorder is another
well-known sleep disorder and is characterized by a discrepancy
between the actual sleep schedule and the required sleep schedule.
One of the major sleep disorders is insomnia, which presents as a
combination of the symptoms (difficulty in initiating sleep, diffi-
culty in maintaining sleep, and waking up earlier than necessary)
and associated daytime consequences. About 20% of the general
population has insomnia symptoms three or more nights a week,
of which about half have daytime consequences and meet the
criteria of an insomnia diagnosis (19).

Several instruments are available to assist health care providers
in evaluating complaints of insomnia. Polysomnography (PSG),
which monitors such as brain activity and muscle movements, is
the gold standard for evaluating sleep disorders such as insomnia,
hypersomnia, and sleep apnea, and it is essential for the definitive
diagnosis of these disorders. Since long-term measurements using
PSG are not feasible, sleep questionnaires are also used with
PSG measurement for diagnosis today (20, 21). However, these
questionnaire-based estimates do not reflect the absolute values
obtained by PSG. Thus, wristband accelerometers are commonly
used as an alternative to PSG and sleep questionnaires. In fact,
they have been used for many large-scale analyses so far (22–24)
and have led to the discovery of several genes involved in sleep time
regulation (25, 26). In combination with machine learning, it is
now possible to capture the detailed structure of sleep, including
midawake. The large-scale dataset thus obtained enabled us to
systematically classify and interpret the various sleep phenotypes
in modern society at a high resolution. Ultimately, large-scale
measurements and automatic and quantitative classification of
sleep phenotypes could reduce the workload of clinicians and
may even lead to the discovery of rare phenotypes that have not
received much attention so far.

In this study, as a first effort at automatic classification of sleep
phenotypes, we classified sleep phenotypes based on over 100,000
accelerometer–acquired datasets in the UK Biobank (27). The
large-scale acceleration data were converted to sleep/wake time
series data by combining the state-of-the-art sleep/wake classifi-

cation algorithm, termed ACCEL (28), and a nonwear detection
algorithm. We calculated 21 sleep indexes from sleep/wake time
series data and applied manifold-based dimension reduction and
clustering methods (29, 30). The systematic and unsupervised
clustering of the large-scale dataset revealed 16 clusters, rep-
resenting distinctive sleep phenotypes that are consistent with
medically described conditions, including social jet lag–related
sleep phenotypes and several insomnia-related sleep phenotypes
(Fig. 1).

Results

Sleep/Wake Time Series Data. In this study, we further
optimized and applied the algorithm of ACCEL to extract
sleep/wake time series data from acceleration data obtained
using Axivity, the activity-tracking wristband with a triaxial
accelerometer used in the UK Biobank project (27). The original
sleep/wake classification algorithm is a machine learning–based
algorithm that uses XGBoost and the power spectrum of jerk (a
derivative of acceleration) as its features (28). In this study, we
simultaneously acquired 27 PSG data and Axivity acceleration
data and optimized the sleep/wake classification algorithm
for Axivity (SI Appendix, Table S1). The Axivity signal had
lower amplitudes in terms of jerk and the power spectrum
during sleep epochs than wake epochs, as was shown in a
previous study (SI Appendix, Fig. S1 A–C ) (28). The XGBoost
hyperparameters were optimized to maximize the summation of
accuracy and F measure the sleep/wake classification algorithm
using Bayesian optimization (SI Appendix, Fig. S1D). We also
adopted the nonwear detection algorithm from a previous study
(31); this algorithm uses the thresholds of two features, SD and
range of acceleration, to predict nonwearing periods. In this
study, we analyzed the distributions of these features between
wearing and nonwearing periods and demonstrated that the
thresholds proposed in the previous study are adaptable to
Axivity (SI Appendix, Fig. S1 E and Fand Table S2). As a result
of combining the sleep/wake classification and nonwear detection
algorithms, the algorithm used in this study achieved high
sensitivity (97.20 ± 2.38%) and specificity (82.19 ± 12.03%);
these are the percentages that the algorithm correctly classified
sleep epochs as sleep and wake epochs as wake, respectively

Sleep/wake classification
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Fig. 1. Overview. About 100,000 triaxial acceleration datasets stored in the UK Biobank were converted to the sleep/wake time series data through the
sleep/wake classification and the nonwear detection algorithms. The sleep/wake time series data were then converted to 21 sleep indexes. Lastly, the landscape
of human sleep phenotypes was classified by clustering methods based on the sleep indexes.
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(SI Appendix, Fig. S1G). We also confirmed that our algorithm
shows high performance for acceleration data with a different
sampling frequency (SI Appendix, Fig. S1 H and I and Table S3).
Moreover, the high specificity of the algorithm allowed us to
accurately detect short-term awake episodes during sleep, which
had been difficult in previous studies (22–24). We also calculated
two standard sleep indexes, total sleep time (TST), and wake
after sleep onset (WASO). These are used to characterize sleep
structures in PSG-based studies and are also often used to
evaluate the performance of sleep/wake classification algorithms
(SI Appendix, Fig. S2 A–D) (22–24). In this study, sleep onset
and offset were defined from sleep/wake time series data, during
which summation of sleep time and awaking time were measured
as TST and WASO. Bland–Altman plots show that our algorithm
overestimated TST and WASO by only 5.89 and 1.43 min,
respectively (SI Appendix, Fig. S2 E and F ), which are almost
comparable with other previous studies (22–24).

Sleep Indexes Extraction. Generally, people take the longest
sleep at night, but due to the increased diversity of social life, some
people sleep longest during the day (32). In addition, variation
in total sleep amount per day, high WASO, and low TST are
sometimes considered as hallmarks of sleep disorders (33). To
capture the diverse structures of sleep, we converted sleep/wake
time series data to a total of 21 sleep indexes, including 17
common sleep indexes representing quantity-related features and
four rhythm-related sleep indexes representing circadian rhythm–
related features (Fig. 2A and SI Appendix, Table S4).

The 17 common sleep indexes include the number and length
of sleep windows, which represent the time zone of dense sleep
(34), and sleep time (ST) and wake time (WT), which represent
sleep duration and midawake duration during sleep windows,
respectively. In this study, two different sleep windows were con-
sidered to capture both long and short sleep windows according
to the following procedure (Fig. 2B). Convert wake periods of less
than 10 min to sleep periods and vice versa (Fig. 2 B, a and b). The
threshold of 10 min was determined by verifying the sensitivity
and specificity of the sleep/wake classification algorithm using the
pseudo-sleep/wake time series data (SI Appendix, Fig. S3 A–C ).
Evaluate the length of time gaps between sleep periods. If the
duration is less than 60 min, connect them as a sleep window (35)
(Fig. 2 B, c). According to the length of each sleep window, name
it a short sleep window if shorter than a threshold or a long sleep
window if longer than a threshold (Fig. 2 B, d and SI Appendix).
Fig. 2C shows an example of sleep data of 1 day from noon to the
next noon (noon-to-noon data). There is one long sleep window
and one short sleep window, where the threshold was set as 3.75 h.
The blue area in Fig. 2C shows the long sleep window from after
9:00 PM until about 7:00 AM, including a total of 0.89 h of wake
episodes (WT long) and 8.30 h of sleep episodes (ST long). The
green area in Fig. 2C shows that there is a short sleep window from
before 9:00 AM until about 11:00 AM, during which there is 0.97
h of wake episodes (WT short) and 1.42 h of sleep episodes (ST
short). The percentage of sleep time in 24 h (sleep percentage) is
40.49%. For subjects with multiple days of measurement, mean
(MN) and SD were calculated for each sleep index.

The rhythm-related sleep indexes adopted in this study (pe-
riod, amplitude, and phase) are commonly used features in the
field of circadian rhythm research (Fig. 2 D–F ) (36–39). Period
was calculated as the maximum peak of chi-square periodogram
(SI Appendix, Fig. S3 D–F ) (36). It is usually difficult to obtain
the true amplitude of circadian rhythms without various pertur-
bations (such as light illumination). Therefore, amplitude in this
study was defined as a coefficient of variation (SD/mean) of wake

amount per 10 min, as in a previous study (Fig. 2E) (37), to
represent the amplitude of a circadian output to sleep. In the case
of data in Fig. 2 D and E, period is 24.00 h, and amplitude is
0.67. To calculate phase, we used the van der Pol limit cycle,
which is a classical model for calculating the circadian phase in
human studies (38, 39). After fitting data, we defined phase as
the duration between the minimum point on the fitted curve (the
magenta point in Fig. 2F ) and the last noon. In the case of data
in Fig. 2F, phase is 12.11 h.

Distribution of Sleep Indexes. In this study, we analyzed the
Axivity dataset of 103,200 subjects over 522,826 d in total, with
up to 7 d of continuous measurement from the UK Biobank
project (27). To calculate amplitude and period, we selected
individual records from subjects with more than 3 d of continuous
measurement and less than 5 h of nonwearing period (Fig. 3A
and SI Appendix, Fig. S4A); 91,765 subjects met these criteria,
and their acceleration data were converted into sleep/wake time
series data for the calculation of 21 sleep indexes. The threshold
between the long and short sleep windows was determined by
setting a threshold based on the distribution of sleep window
length (SI Appendix, Fig. S4B).

The correlation coefficients between the sleep indexes are
shown in SI Appendix, Fig. S4C ; the median of coefficients is
0.09, which indicates that there are weak correlations between
the sleep indexes. We plotted distributions for each sleep index
(Fig. 3 B–G and SI Appendix, Fig. S4 D–R), where curve fitting
was conducted for all distributions, except for integral and SD
features, to capture their shapes. The mean of ST long MN was
6.60 h (Fig. 3B) (age = 62.01 ± 7.82). When we analyzed the
data for subjects in their 70s, the mean of ST long MN was
6.33 h, which is close to TST in a PSG-based large-scale study
(n = 889, age = 76.28 ± 5.47) (40). The representative plots
from both sides (2.28 percentile) of distribution are shown in
Fig. 3 B–G. We found that the representative plots where certain
sleep indexes are in the upper or lower 2.28 percentiles show
interesting sleep phenotypes (Fig. 3 C–E), some of which are
similar to sleep disorder–like phenotypes. With regard to the
representative plot with high WT long MN shown in Fig. 3C,
awake time during the long sleep window per day is 170.25
min, which may indicate an insomnia-like sleep phenotype with
long WASO (33). Similarly, the representative plot with high
ST short MN shown in Fig. 3D includes longer daytime sleep
episodes (137.83 min/d), which are a feature of hypersomnia
(33). The mean of phase MN was 15.22 h, where representative
plots with low and high phase represent phenotypes of a morning
person (subjective midnight at around 1:30 AM) and a night
person (subjective midnight at around 5:30 AM), respectively
(Fig. 3E). Thus, it may be possible to find a sleep phenotype
that has the same characteristics as a particular sleep disorder
by setting a proper threshold; however, setting a threshold can
sometimes be arbitrary. In addition, the correlations among 21
sleep indexes (SI Appendix, Fig. S4C ) could make classification
difficult. Therefore, we decided to use all 21 sleep indexes for our
classification.

Dimension Reduction and Clustering. For analyses of large-
scale data with multiple dimensions, dimension reduction
methods usually play an important role and enable us to visualize
high-dimensional data in a two- or three-dimensional space.
In this study, dimension reduction methods were applied to
21 sleep indexes to classify sleep phenotypes and delineate
the sleep landscape (Fig. 4A). We applied four methods—
principal component analysis (PCA), t-distributed stochastic
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neighbor embedding (t-SNE), uniform manifold approximation
and projection (UMAP), and a combination of PCA and
UMAP—to the 21-dimensional data and converted them to
3-dimensional data, resulting in UMAP dividing the dataset into
more interpretable clusters than the other methods (Fig. 4 B and C
and SI Appendix, Figs. S5 A–D and S6A). Therefore, we selected
the UMAP method in this study and further applied a clustering
method known as density-based spatial clustering of applications
with noise (DBSCAN).

As a result, we obtained five clusters (clusters 1 to 5) as shown
in Fig. 4C. The features and population size of each cluster are

shown in Fig. 4 D and F–J and SI Appendix, Fig. S5 E–T and in
Fig. 4E, respectively. Cluster 1 has higher WT long MN than other
clusters (Fig. 4 D and H ), with more than one long sleep window
per day (SI Appendix, Fig. S5K ) and thus, high sleep percentage
(SI Appendix, Fig. S5T ), which means that the subjects in cluster
1 slept more and with long-term midawake. Since difficulty in
maintaining sleep is one of major characteristics of insomnia (18,
33), we named cluster 1 “insomnia with long sleep duration
and midawake.” The criteria for an insomnia diagnosis include
both nocturnal sleep problems and daytime consequences, but the
UK Biobank dataset used in this study does not have additional
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information about daytime complaints, which led to the focus
being on only one aspect of insomnia, nocturnal sleep problems.
Both clusters 2 and 3 are characterized by low ST long MN and

high ST long SD (Fig. 4 D, F, and G), while their phase SDs
are different (Fig. 4 D and J ). High phase SD in cluster 2 might
capture an irregular feature of subjects’ lifestyle. Another feature
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of cluster 2 is that ST long MN varies between days (Fig. 4G),
suggesting that the length and timing of sleep for subjects in
cluster 2 vary from day to day. Meanwhile, cluster 3 shows normal
phase SD (Fig. 4J ) and high ST long SD (Fig. 4G), suggesting
that the subjects in cluster 3 slept at almost the same time every
day but that the sleep amount per day varied. Cluster 4 contains
about 72.81% of total population (Fig. 4E), and its features are
almost the same as those of whole datasets (Fig. 4D), suggesting
that cluster 4 is the major cluster. Cluster 5 has zero ST short
MN, while the other sleep indexes are normal, which means that
the subjects in cluster 5 do not have any daytime sleep (Fig. 4 D
and I and SI Appendix, Fig. S5O).

We obtained five clusters related to insomnia or lifestyle. In-
terestingly, the sleep indexes in some clusters suggested that they
could be divided even further. For example, the distribution of
phase SD of cluster 2 was broad, raising a possibility that it
contains more than two clusters with different phase SD features
(Fig. 4J ). Therefore, we repeated the same clustering process (i.e.,
dimension reduction and clustering) for the individual records
contained in each cluster and obtained the next-layer clusters
(Fig. 5A). By repeating this clustering process until a cluster is
not divided into at least two clusters with their size equaling 20
or larger, we obtained 17 clusters (SI Appendix, Tables S5 and S6).
However, there were strong correlations between the 17 clusters,
suggesting that some of the clusters may be easier to understand
if they were regrouped together (SI Appendix, Fig. S6B). Thus, we
regrouped 17 clusters by applying Ward’s method, an objective
hierarchical clustering method, to their sleep indexes; regrouping
across clusters 1 to 5 was not performed to maintain the first-layer
relationship (Fig. 5A and SI Appendix, Fig. S6B). As a result, we
obtained eight clusters, where clusters 1 and 5 were undivided,
and clusters 2, 3, and 4 were divided into two subgroups (clus-
ter 2a/b, cluster 3a/b, and cluster 4a/b) (Fig. 5 B and C and
SI Appendix, Figs. S7–S9 and Tables S7 and S8).

Fig. 5B shows the eight clusters mapping on the space of
clusters 1 to 5, where clusters 2a and 2b are spatially sepa-
rated but the boundaries of clusters 3a, 3b, 4a, and 4b are
not obvious. Cluster 2a contains about 88.27% of individual
records in cluster 2 (Figs. 4E and 5C ) and shows high phase SD
(Fig. 5D), low ST long MN (SI Appendix, Fig. S7A), and high
ST long SD (SI Appendix, Fig. S7B), as does cluster 2. Therefore,
we named cluster 2a “irregular sleep schedule” (Fig. 5E and
SI Appendix, Fig. S8B). This irregular sleep phenotype may be
related to the difference in sleep/wake patterns between workdays
and holidays or social jet lag (13). This sleep phenotype sometimes
appears in rotating shift workers who alternate daytime and night
shifts (9, 41). On the other hand, cluster 2b has no long sleep
window (SI Appendix, Fig. S7K ) but many short sleep windows,
which lead to various phases during days and low sleep percent-
age (Fig. 5D and SI Appendix, Fig. S7U ). These characteristics
show that the subjects in cluster 2b repeated short-term sleep
(Fig. 5F and SI Appendix, Fig. S8C ), and thus, this cluster was
named “fragmented sleep with short sleep duration.” Cluster 3 was
divided into clusters 3a and 3b, where almost all features of cluster
3 are preserved (e.g., low ST long MN, high ST long SD, and
constant phase SD). However, cluster 3a has higher WT long MN,
WT long SD, and sleep percentage than cluster 3b (Fig. 5G and
SI Appendix, Fig. S7U ), which means that there are differences
in the length of midawake and sleep duration between clusters
3a and 3b (Fig. 5 H and I and SI Appendix, Fig. S8 D and E).
Thus, we named clusters 3a and 3b “insomnia with normal sleep
duration” and “insomnia with short sleep duration,” respectively.
Cluster 4 was divided into clusters 4a and 4b, with the distribution
of period varying between them (Fig. 5J ). Cluster 4a has a

sleep/wake cycle with period apparently longer than 24 h (the
mean of the period is 25.19 h), which leads to higher phase
SD (Fig. 5J ). Thus, we characterized cluster 4a as “longer 24-
h periodic sleep/wake cycle,” where subjects were also identified
by setting a threshold on the distribution of period (Fig. 3F ).
Notably, this apparent long period may represent a mixture of two
different sleep phenotypes (Fig. 5K ). Longer-term measurements
(e.g., more than 2 wk) and more information about the subjects
would allow for deeper insights. Cluster 4b is the largest group
(Fig. 5C ), and its distribution is close to that of the whole dataset,
indicating that cluster 4b is the major group.

In summary, we identified eight clusters whose sleep indexes
distribute smoothly (SI Appendix, Fig. S7), indicating that these
clusters could not have been obtained by using only a threshold-
based method but were revealed by using an unsupervised and un-
biased clustering method like UMAP. On the other hand, groups
like cluster 4a could be obtained by setting a proper threshold
for the distribution of one sleep index (Fig. 3F ), which suggests
that some classifications could be revealed by using a threshold.
In other words, it may be possible to understand human sleep
phenotypes at a higher resolution by combining threshold-based
and UMAP-based classification, especially in the understanding of
sleep disorders. Although we have obtained a couple of insomnia-
like clusters (Fig. 5B), this may be only a piece of sleep disorders,
and larger clusters, like clusters 3b and 4b, may contain other small
groups representing sleep disorders. Thus, if we can classify normal
sleep and abnormal sleep based on some thresholds and then
apply UMAP to abnormal sleep, we would obtain classifications
of abnormal sleep at a higher resolution, which are expected to be
related to sleep disorders.

Outliers. We chose six sleep indexes and set their lower or
upper 2.28 percentiles as an outlier dataset in clusters 3b
and 4b (Fig. 6A). The proportions of the outlier data in
clusters 3b and 4b were 35.63 and 10.83%, respectively. These
discretized datasets were further classified by using UMAP and
DBSCAN, which revealed eight clusters; of these, two (clusters
3b-1 and 3b-2) were derived from cluster 3b, and the others
(clusters 4b-1 to 4b-6) were derived from cluster 4b (Fig. 6
B–P and SI Appendix, Figs. S10–S12 and Tables S9 and S10).
We confirmed that similar clusters, clusters b and c and
clusters e to j, can be obtained when the analysis is applied
to the entire outlier dataset, corresponding to clusters 3b-1
and 3b-2 (clusters b and c) and clusters 4b-1 to 4b-6
(clusters e to j), respectively (SI Appendix, Fig. S12 E and F ).
As shown in Fig. 6B, there are four more insomnia-like clusters
(SI Appendix, Tables S11 and S12) and four more lifestyle-related
clusters in these eight clusters.

Both clusters 3b-1 and 3b-2 have the insomnia-like pheno-
type characterized by a long sleep window divided into multiple
short sleep windows just like cluster 3b (Fig. 6 I and J and
SI Appendix, Fig. S11 A and B). Fig. 6D shows one feature of
this type of insomnia-like phenotype, where clusters 3b-1 and
3b-2 have higher ST long SD (SI Appendix, Fig. S10B). Thus,
clusters 3b-1 and 3b-2 can be considered as subtypes of the
insomnia-like phenotype in terms of different distributions of WT
long MN from cluster 3b (Fig. 6G and SI Appendix, Fig. S10C ).
The subjects in cluster 3b-1 have long-term midawake at night
while having low WT long MN. These features demonstrate
that the subjects in cluster 3b-1 could not fall asleep smoothly
after midawake, although they sleep with normal numbers of
midawake (Fig. 6I and SI Appendix, Fig. S11A). On the other
hand, cluster 3b-2 is characterized by higher WT long MN than
cluster 3b and by both long-term and short-term midawake at
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Fig. 5. Hierarchical clustering analysis revealed eight clusters. (A) The flow of divisive hierarchical clustering. The same clustering process was repeated three
times (SI Appendix). The 17 clusters obtained by divisive hierarchical clustering were regrouped using Ward’s method and named as clusters 1, 2a, 2b, 3a, 3b,
4a, 4b, and 5. (B) Upper shows the result of first-layer clustering, where each individual record was colored by clusters’ colors. The caption summarizes sleep
phenotypes of each cluster. Lower Left, Lower Center, and Lower Right are the enlargement figures of clusters 2, 3, and 4, respectively. (C) The size of each cluster.
Twenty-seven individual records were detected as noise by DBSCAN. (D–K ) The distribution of sleep indexes of (D) clusters 2a and 2b, (G) clusters 3a and 3b, and
(J) clusters 4a and 4b and representative plots of (E) cluster 2a, (F) cluster 2b, (H) cluster 3a, (I) cluster 3b, and (K ) cluster 4a shown as double plots.
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Fig. 6. Clustering analysis of the outlier dataset revealed eight clusters. (A) The flow of data selection for the outlier clustering. Blue marks the lower and upper
2.28 percentiles in six sleep indexes in Center. The individual records with such values colored sky blue are divided as the outlier dataset, while the remaining
individual records colored gray are divided as the normal dataset. (B) The result of clustering. The outlier dataset is divided into eight clusters. (C) The size of
each cluster. Four hundred fifty-eight individual records were detected as noise by DBSCAN. (D–H) The results of outlier clustering, where each individual record
is colored corresponding to the heatmap of each sleep index. (I–P) Representative plots of clusters in the outlier clustering shown as double plots. (Q) The
summary of whole clustering and outlier clustering. The radius of each cluster shows the L2 norm between the mean of each cluster and that of whole dataset
(the black center point). (R) Sex and age proportions of whole clustering and outlier clustering.
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night, which leads to insufficient sleep amount (Fig. 6J and
SI Appendix, Figs. S10U and S11B). The phenotypes of clusters
4b-4 and 4b-5 are also subtypes of the insomnia-like phenotype,
but sleep in both clusters is not fragmented as severely as in cluster
3–related clusters. The subjects in cluster 4b-4 had repeated short-
term midawake at night (Fig. 6N and SI Appendix, Fig. S11F ),
which is reflected as high WT long MN (Fig. 6G) and leads
to the insomnia-like phenotype with unfragmented and short
sleep duration. In contrast, cluster 4b-5 is characterized by low
WT long MN (Fig. 6G) and long-term midawake (Fig. 6O
and SI Appendix, Fig. S11G), which are the same as cluster 3b-
1 (Fig. 6I and SI Appendix, Fig. S11A). The difference between
them is how fragmented their sleep is, in that sleep in cluster 4b-5
is fragmented less often.

Cluster 4b-1 is characterized by long sleep duration at night
without long-term midawake, as indicated by high long sleep
window length MN (SI Appendix, Fig. S10 C and I ). Sleep per-
centage (Fig. 6E and SI Appendix, Fig. S10U ) is high not because
of multiple sleep windows but due to one long sleep window
of about 9 h (Fig. 6K and SI Appendix, Fig. S11C ), suggest-
ing that the phenotype of cluster 4b-1 is of a long sleeper.
Hypersomnia is characterized by long sleep and daytime naps.
The subjects in cluster 4b-1 only have the former characteristic,
suggesting that they have no complaints about daytime naps
and do not fall in the standard categorization of hypersomnia
(42). Clusters 4b-2 and 4b-6 stand out in terms of phase MN,
where cluster 4b-2 has lower phase MN, while cluster 4b-6
has higher phase MN than the whole dataset (Fig. 6F and
SI Appendix, Fig. S10Q), indicating that the subjects in clusters
4b-2 and 4b-6 are morning persons and night persons, respectively
(Fig. 6 L and P and SI Appendix, Fig. S11 D and H ). The last
cluster, cluster 4b-3, shows apparent shorter 24-h periods (Fig. 6H
and SI Appendix, Fig. S10S) in contrast to cluster 4a. However,
there are two types of sleep phenotypes (Fig. 6M ) like the two
types included in cluster 4a.

In summary, the large-scale sleep phenotype analysis on ac-
celeration data from over 100,000 subjects identified 16 clusters
(Fig. 6Q). We also investigated if these 16 clusters are related
to the season in which they were measured or the age of the
subjects. The proportions of sex, age (40s, 50s, 60s, and 70s),
and measurement month in each cluster are shown in Fig. 6R
and SI Appendix, Fig. S12G. We found that there is no obvious
correlation between the cluster and the measurement season or
month. Notably, the proportion of subjects in their 70s in cluster
2b is higher than that in other clusters (Fig. 6R). As age increases,
WASO has been reported to gradually increase, and TST has
been reported to decrease, suggesting that some elderly people
might have such a phenotype (43). Therefore, the 16 clusters
demonstrate various sleep phenotypes and reveal a first draft
landscape of human sleep phenotypes.

Discussion

In this study, we conducted a large-scale systematic analysis of
the diversity of sleep phenotypes using about 100,000 long-
term acceleration data collected by the UK Biobank (Fig. 1).
The acceleration data were converted to 21 sleep indexes using a
state-of-the-art sleep/wake classification algorithm and a nonwear
detection algorithm (Fig. 2A). By applying UMAP and DBSCAN,
we obtained 16 clusters (clusters 1, 2a, 2b, 3a, 3b, 4a, 4b, and 5
and clusters 3b-1, 3b-2, and 4b-1 to 4b-6), including insomnia-
like and lifestyle-related clusters (Figs. 5B and 6B). Parts of these
insomnia-like clusters were identified by focusing on the outliers

that have at least one sleep index with a value in the upper or
lower 2.28 percentiles of distribution (Fig. 6B)—cluster 4b-4
represents an insomnia-like phenotype with unfragmented and
short sleep duration, whereas cluster 4b-5 represents an insomnia-
like phenotype with long-term midawake and less fragmented
sleep. In this way, we identified several diverse sleep phenotypes
and delineated a real-world sleep landscape (Fig. 6Q).

The irregular sleep schedule in cluster 2a involves a few days
with delayed sleep onset compared with onset on other days,
which might reflect different lifestyles on workdays and holidays.
These delayed sleep schedules are also observed for rotating or
fixed night shift workers, such as a sleep onset delay of about 7 h
on night shift days compared with holidays and daytime workdays
(9, 41), suggesting that cluster 2a could reflect the lifestyle of
shift workers who work at night 1 or 2 d/wk. Most shift workers
suffer from misalignments between the circadian rhythm and the
required sleep schedule, which cause reduced sleep duration and
low sleep quality after night work shifts (19, 44), often leading
to depression and anxiety (16). Thus, quantitative detection of
midawake and daytime sleep may be important in supporting the
health of shift workers. Notably, shift workers represent about
16% of the working population (45), but cluster 2a accounts for
only about 0.47% of the whole dataset (Fig. 5C ), which may
be due to the dataset used in this study being obtained over too
short a period to identify shift work when the shifts are not very
frequent. Measurements over a longer period (e.g., 2 wk) would be
useful for more than just the identification of shift workers. Two
clusters were identified based on the constant phase of sleep/wake
cycle and named as “morning person” and “night person” (clus-
ters 4b-2 and 4b-6, respectively). The question of whether the
circadian clocks of these people or the phases shifted due to social
constraints would be resolved by long-term measurements. If the
shift is of the circadian clock, the subjects would have advanced
sleep phase syndrome or delayed sleep phase syndrome, which
are known to be linked to genetic factors (46, 47). Clusters 4a
and 4b-3 are characterized by an apparent period that is shorter
or longer than 24 h, while each of them includes two types of
sleep phenotypes. In cluster 4a, for example, the sleep phenotype
shown in Fig. 5 K, Left appears to be free running, while that
shown in Fig. 5 K, Right can be considered as a difference between
workdays (days 1 to 4) and holidays (days 5 and 6). In cluster 4b-3,
Fig. 6 M, Left seems to have a short period, while the apparent
short period of Fig. 6 M, Right is caused by the effects of working
days; for example, days 1 to 3 were holidays followed by three
continuous workdays. Long-term measurements may reveal the
underlying environmental factors affecting these two phenotypes.
Long circadian rhythms are observed in subjects with visual hand-
icaps (48) or having lifestyles without sunlight exposure (49). Fur-
thermore, using pseudo-sleep/wake time series data that included
different sleep schedules per day, we verified that a 6-d measure-
ment is not sufficient to completely distinguish between such sleep
and short/long circadian rhythms (SI Appendix, Fig. S3F ). Partic-
ularly, the period of such pseudo data tends to be underestimated,
which is why such a short period cluster that is rarely observed
in the light–dark cycle condition (48) appeared in this study. Of
note, the pioneering large-scale study of human sleep succeeded
in an extraction of several features corresponding to the diversity
of human sleep phenotypes from long-term measurements (34).
Winnebeck et al. (34) utilized acceleration data with more than
weeks to extract time series features, which could be applied to our
sleep landscape pipeline in the future. Advances in the machine
learning field could drive and color the sleep landscape if we can
use the sleep/wake time series data as the input instead of the sleep
index. Thus, longer-term measurements and time series analyses
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can better identify the sleep phenotypes of subjects, which may
further improve our understanding of genetic and environmental
regulation of sleep.

The sleep/wake classification algorithm used in this study
reached high specificity and sensitivity, demonstrating the
ability to capture short-term midawake. This advantage led to
identifying insomnia-like phenotypes characterized by midawake,
known as difficulty in maintaining sleep. Seven clusters related
to insomnia were classified, with a wide variety of sleep
duration, midawake counts, and midawake duration between
them (SI Appendix, Tables S11 and S12). By focusing on sleep
duration, these insomnia clusters could be classified into three
groups—the long sleep duration (cluster 1), normal sleep duration
(clusters 3a and 4b-5), and short sleep duration (other clusters)
groups. Several differences between insomnia with normal sleep
duration and with short sleep duration have been reported (50,
51). Interestingly, insomnia with short sleep duration has been
associated with impaired neurocognitive functioning (50), while
insomnia with normal sleep duration has been associated with an
anxious–ruminative profile (51). Those differences demonstrate
that it is important to describe subjects with insomnia in more
detail based on how much they sleep. Moreover, insomnia clusters
with normal or short sleep duration can be subdivided based on
midawake counts. Clusters 3a and 3b and clusters 3b-1 and 3b-2,
derived from cluster 3b, are characterized by fragmentation of
sleep caused by more frequent midawake. Cluster 3a shows the
most fragmented sleep among these clusters, but sleep duration
was normal. Clusters 3b, 3b-1, and 3b-2 also show fragmented
sleep, with clusters 3b-1 and 3b-2 being more fragmented. The
number of awakenings is usually measured by PSG but is rarely
used in studies on insomnia. Our results suggest that the number
of awakenings might distinguish heterogeneous sleep phenotypes
that were otherwise considered as the same phenotype (52). The
comparison between clusters 3b-1 and 3b-2 demonstrates the
variation of duration of each midawake. Cluster 3b-1 has 3.09
times more long-term midawake (longer than or equal to 60
min) but 1.39 times less short-term midawake (less than 60
min) than the average of all data, indicating that subjects in
cluster 3b-1 could sleep deeply but could not fall asleep smoothly
again once they woke up. On the other hand, cluster 3b-2 has
both long-term and short-term midawake, which is why this
cluster shows the shortest sleep duration among insomnia-like
clusters. The phenotypes of subjects with long-term midawake
(e.g., clusters 3b-1 and 3b-2) could be considered as insomnia
with difficulty in both maintaining and initiating sleep (53). Both
clusters 4b-4 and 4b-5 have normal midawake counts, but what
this characteristic means varies between them. Cluster 4b-4 has
the most amount of short-term midawake among the insomnia-
like clusters. The combination of normal midawake counts and
short-term midawake suggests that subjects in cluster 4b-4 wake
and fall asleep repeatedly and frequently, indicating that they
might not have trouble falling asleep again after midawake
but have a problem in maintaining sleep. Cluster 4b-5 has
normal counts of midawake and little short-term midawake,
indicating that subjects in this cluster suffer from insomnia-like
symptoms less often than those in other insomnia clusters. The
International Classification of Sleep Disorders, Third Edition (18)
and the Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition (33) define insomnia as a sleep phenotype with sleep
difficulty on more than three nights per week, suggesting that the
subjects in cluster 4b-5 do not fully meet this criterion and could
be classified as preinsomnia. In the context of insomnia, individual
records for a longer period would also be useful. Taken together,
seven clusters show various insomnia phenotypes, ranging from

well-known to undefined types, suggesting that quantitative,
detailed, and accurate sleep analysis using accelerometers will
also contribute to the classification as well as diagnosis of
diseases.

We propose a pipeline for drawing a landscape of sleep phe-
notypes using a systematic and unbiased clustering method. By
linking it with information of different modalities, such as present
illness, past medical history, medications, education, occupa-
tions, lifestyle habits (e.g., alcohol intakes, smoking, diet), blood
biochemistry, and genomics, the human sleep landscape could
become more comprehensive and accurate. Some of this informa-
tion can be obtained from the UK Biobank. The UK Biobank
contains a series of diagnostic data classified following the In-
ternational Classification of Diseases, 10th revision categories.
Thus, it would be a promising next step of this study to analyze
the relationship between the subjects in each cluster and their
medical history, although the dataset in the UK Biobank is
not inclusive for all subjects. For example, for subjects with a
medical history of sleep apnea syndrome or other sleep-related
disorders, it would be interesting to use this information for an
annotation of clusters, which will expand the current human sleep
landscape.

We also note that accurate and long-term sleep measurement
could help us to diagnose psychiatric disorders complicated by
sleep disorders because detailed sleep phenotypes of such disorders
vary according to the underlying psychiatric condition (54) and
may work as digital biomarkers. For example, 15% of depressed
patients complain of hypersomnia, and about 70% complain of
insomnia with difficulty in initiating or maintaining sleep (55).
A study reported that 11 first episode and neuroleptic-naive pa-
tients showed prolonged sleep latency but normal sleep duration,
indicating that these patients had insomnia with difficulty in
initiating sleep (56). Interestingly, some studies reported that
patients with schizophrenia show decreased TST and significant
disruption in maintaining sleep (57). As psychiatric disorders,
including schizophrenia, are understood as a spectrum, it may be
possible to segregate psychiatric disorders at a higher resolution
by classifying them based on the symptoms of complicating sleep
disorders. Moreover, medication strategies depending on compli-
cating sleep disorders may lead to better pharmacologic treatments
of psychiatric disorders. In this context, utilizing the rich dataset
stored in the UK Biobank including the diagnostic results of
mental disease, will enable a pilot study for investigating the
relationship between the human sleep landscape and psychiatric
disorders.

Materials and Methods

Data Acquisition. Thirty-six simultaneously measured PSG and Axivity data
were obtained from healthy human volunteers at the monitoring facility in the
University of Tokyo and used to train and validate the sleep/wake classification
algorithm. To evaluate the accuracy of the nonwear detection algorithm, we col-
lected Axivity data of 20 subjects (267 d of data in total). Wearing and nonwearing
periods were judged using the time stamp records when the subjects were not
wearing the device.

The UK Biobank Dataset. Axivity data (index [ID]: 90001) recording along
with information regarding sex (index [ID]: 31), year of birth (ID: 34), and month
of birth (ID: 52) were downloaded from the UK Biobank. Age was calculated by
taking the difference between the first day of the subject’s birth month and the
first day of acceleration data.

Data Availability. Acceleration data used for the large-scale analysis in this
study were previously deposited in the UK Biobank (project ID: 48357).
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Supporting Information Text13

Materials and Methods14

Data acquisition. In this study, PSG data and Axivity (AX3, a wristband-type triaxial accelerometer, Axivity Ltd., Hoults15

Yard, UK) triaxial acceleration data were obtained in the University of Tokyo. Thirty-six PSG data and triaxial accelerometer16

data of one-night measurement were used to train and validate the sleep/wake classification algorithm. To evaluate the accuracy17

of nonwear detection algorithm, we collected Axivity data of 20 subjects (267 days data in total). Wearing and nonwearing18

periods were judged using the timestamp records when the subjects were not wearing the device.19

Participants (cumulative counts) who reported no present and past diagnosis of any sleep disorders, mental illnesses, and20

neurodegenerative diseases were recruited. No participants declared taking medicines that may affect sleep, such as cold21

medicine. More than two measurements per participant were allowed. The study protocols were approved by the Research22

Ethics Committee, Graduate School of Medicine, the University of Tokyo (No. 2018174NI and No. 11281). Informed consent23

was obtained from every subject for each measurement. More information about the subjects has been provided in Table S1,24

Table S2, and Table S3.25

PSG data were recorded using a wireless portable PSG system (SOMNOscreen plus, SOMNOmedics GmbH, Germany)26

at the monitoring facility in the University of Tokyo. Sleep staging for every 30 seconds with PSG records was conducted27

manually by trained experts (Fukuda Denshi Co. Ltd, Japan). The sampling rate and dynamic range of Axivity were set to 5028

or 100 Hz and ± 8 g at 10-bit resolution, respectively.29

Sleep/wake classification algorithm. The sleep/wake classification algorithm used in this study is based on a machine learning-30

based algorithm created for a triaxial accelerometer (ACCEL) (1). To validate and optimize the parameters of original31

algorithm to the Axivity data, 27 PSG and Axivity data were used. The original algorithm uses the power spectrum of32

jerk as input data (Fig. S1A) and XGBoost with six hyperparameters: learning_rate, gamma, colsample_bytree, subsample,33

max_depth, and min_child_weight. These parameters were optimized by using Bayesian optimization (Fig. S1D). Each34

parameter was allowed to have values within the range, [0, 1], [0, 5], [0.01, 1], [0.01, 1], [1, 30], and [1, 30], respectively.35

The parameter set of six hyperparameters was evaluated by leave-one-out cross-validation, where 26 data were used for36

training XGBoost with a parameter set, and 1 data was used for validation. The performance of algorithm was evaluated37

based on the summation of accuracy and F measure. We used Bayesian optimization and iterated 2,000 times to tune the38

algorithm. F measure was calculated as 2×precision × recall/(precision + recall), where wake was calculated as true and39

sleep as false. The optimal parameters were as follows: learning_rate = 0.07, gamma = 4.88, colsample_bytree = 0.86,40

subsample = 0.93, max_depth = 23, and min_child_weight = 5. The program for Bayesian optimization was adopted from41

https://github.com/fmfn/BayesianOptimization.42

The performance of sleep/wake classification algorithm was calculated by leave-one-out cross-validation. The predicted43

sleep/wake time series data were compared to PSG-based sleep/wake time series data (ground truth) epoch to epoch, and the44

average scores are 93.24% (accuracy), 85.69% (F measure), 97.20% (sensitivity), 82.19% (specificity), and 81.03% (Cohen’s45

kappa). Sensitivity and specificity represent the performance in terms of sleep and wake detection, respectively. The performance46

of sleep/wake classification algorithm was also evaluated for WASO and TST. We calculated TST in predicted sleep/wake time47

series data by calculating the total sleep time between sleep onset and sleep offset, where the first sleep epoch that sustained48

more than 15 minutes was defined as the sleep onset and the last sleep epoch as sleep offset. The performance of TST/WASO49

calculation under varying thresholds of sleep onset from 0 to 30 minutes with 2.5-minute increments is shown in Fig. S2A-D.50

WASO was calculated as the length of wake duration between sleep onset and sleep offset.51

Nonwear detection algorithm. Nonwearing period was predicted based on the standard deviation and the value range of52

each accelerometer axis calculated for every 60-minute block shifted by 15 minutes (2). This algorithm detects a block as a53

nonwearing period if the standard deviation is less than the threshold in at least two axes or if the range is less than the54

threshold in at least two axes. Twenty triaxial accelerometer data (267 days in total) were acquired for validation of nonwear55

detection (Table S2). For these measurements, the participants were asked to keep the records of the time when they were not56

wearing the device, which was used as the ground truth. The standard deviation and range of each axis were calculated for57

every 60-minute period. The process to make blocks for determining thresholds was referred to that in the previous study (2).58

The threshold values proposed in the previous study (2) were adapted in this study (Fig. S1E, F).59

Verification of algorithms and thresholds for UK Biobank analysis. In order to evaluate the effect of difference in sampling60

frequency of Axivity on the performance of sleep/wake classification, triaxial acceleration data sampled at 100 Hz and PSG61

data were obtained (n = 12, Table S3). To compare the performances, the 100 Hz triaxial acceleration data were converted to62

50 Hz before being input into the sleep/wake classification algorithm trained by 50 Hz data (Fig. S1H). The method converting63

100 Hz data to 50 Hz data was used in the analyses of the UK Biobank dataset (Fig. S1H).64

To evaluate the performance of sleep episode detection, epochs were randomly sampled from the triaxial acceleration data65

and connected to create a pseudo sleep/wake time series data (Fig. S3A). To eliminate bias due to epochal selection, 1,00066

validations were performed on each of the two data groups. Pseudo sleep/wake time series data containing 10 hours of sleep67

or wake were created, and the pseudo wake or sleep data were inserted in between, respectively. The length of the inserted68

data was varied from 0 to 100 minutes at a 1-minute step. Sensitivity when sleep pulse pseudo data were classified by the69

sleep/wake classification algorithm is shown in Fig. S3B. Specificity when wake pulse pseudo data were classified is shown in70
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Fig. S3C. Both scores reach 90% the first time when the threshold is 10 minutes when the threshold is changed from 0 minute71

to 100 minutes by a 5-minute step. These results demonstrate that epochs over 10 minutes, which are continuously classified as72

sleep or wake, are sufficiently reliable as characteristics of sleep patterns.73

UK Biobank dataset. Axivity triaxial acceleration data (ID: 90001) recording as up to seven-day continuous measurements,74

along with information regarding sex (ID: 31), year of birth (ID: 34), and month of birth (ID: 52), were downloaded from the75

UK Biobank. Age was calculated by taking the difference between the first day of the subject’s birth month and the first day76

of acceleration data. In this analysis, one day was defined as the sleep/wake time series data from a noon to the next noon and77

named noon-to-noon data. Individual records from 103,200 subjects were analyzed in this study.78

The triaxial acceleration data were converted into sleep/wake time series data as follows. The nonwear detection algorithm79

was applied to the all dataset. The noon-to-noon data containing less than five hours of nonwearing period were considered80

as qualified noon-to-noon data. This criterion was decided by referencing previous studies (3–5). The maximum counts of81

continuous qualified noon-to-noon data ranged from zero to six as shown in Fig. S4A, and individual records with two continuous82

noon-to-noon data showed the lowest ratio. We selected subjects with more than three continuous qualified noon-to-noon data83

and used their records (91,765 individual records) for the analysis of sleep index (Fig. 3A).84

Extraction of common sleep indexes. Due to the low sensitivity and specificity of determining wake episodes and sleep episodes85

shorter than 10 minutes (see also Verification of algorithms and thresholds for UK Biobank analysis), sleep episodes shorter86

than 10 minutes were converted to wake episodes and vice versa. If the length of the time gaps between sleep periods was less87

than 60 minutes, we connected them as a sleep window (4). According to the length of each sleep window, we named them as88

a short sleep window or a long sleep window. The threshold between the short and long sleep windows was determined by89

plotting the distribution of length of sleep window and fitting the distribution with the exponential curve and the Gaussian90

curve (Fig. S4B). The intersection point of two curves, 3.75 hours, was determined as the threshold. Then, non-qualified91

noon-to-noon data were removed and 21 sleep indexes were calculated for qualified noon-to-noon data (522,826 days). ST and92

WT within each long or short sleep window were measured as ST long mean, WT long mean, ST short mean, and WT short93

mean in each qualified noon-to-noon data. Each type of value between multiple noon-to-noon data was summarized as the94

mean (MN) and the standard deviation (SD) within each individual record. Each window was considered to belong to the day95

with the middle of the window to avoid double counts. Finally, sleep percentage was determined as the percentage of sleep96

amount during each individual record.97

Extraction of rhythm-related sleep indexes. Period : The chi-square periodogram (6) was applied to the sleep/wake time series98

data of qualified noon-to-noon data in the range 5 to 35 hours with a 0.1-hour step. The significance level of chi-square99

periodogram was determined as 0.01, as on the reference studies (6, 7). The maximum significant point was determined as100

period of sleep/wake oscillation (Fig. 2D). If there was no significant peak, period was set to zero. Amplitude: Sleep/wake time101

series data were divided into 10-minute blocks. The wake duration was calculated in every block without nonwearing periods.102

The standard deviation and mean of the wake duration between blocks were calculated, and a coefficient of variation (standard103

deviation/mean) was defined as amplitude as previously described (8) (Fig. 2E). Phase: Kronauer’s model based on the van104

der Pol limit cycle was used to extract sleep-wake cycles phases. Sleep/wake time series data were converted to binary data105

(sleep as 0 and wake as 1), where the nonwearing period was considered as missing value. In order to fit the limit cycle curve to106

the binary data, the limit cycle oscillating at 0∼1 was shifted by 30 seconds, and the mean square error from the binary data107

was calculated to determine the best-fitted curve. The duration between the minimum point of the best-fitted curve and the108

last noon was determined as phase of each day. The fitting of phase is calculated for a 24-hour period, regardless of the value109

of period estimated in sleep-index analysis. Phase MN and SD were calculated to summarize phase features (Fig. 2F).110

Finding the function form to fit each sleep index. To find the function form that fits the distribution of each sleep index,111

we tested all functions implemented in scipy.stats to the distribution of sleep indexes except for the number-related sleep112

indexes (long sleep window # and short sleep window #) and SD features (Fig. 3B-G, Fig. S4G, I, M, R). The ten curves,113

“rv_continuous”, “rv_histogram”, “levy_stable”, “ncx2”, “crystalball”, “geninvgauss”, “vonmises”, “gausshyper”, “chi”, and114

“powerlaw”, were excluded due to errors during calculation. Each curve was fitted using maximum likelihood estimation for115

each sleep index, and the curve with the lowest Akaike information criterion score was selected as the best-fitted curve for each116

sleep index. Details about the fitting curves are available at https://docs.scipy.org/doc/scipy/reference/stats.html.117

Clustering process for whole dataset and outlier dataset. The clustering processes consisted of three steps: z score normaliza-118

tion, dimension reduction, and clustering (Fig. 4A). Z score normalization was performed on each sleep index to normalize the119

mean and standard deviation of each sleep index to zero and one, respectively. We tested four dimension reduction methods:120

PCA, t-SNE, UMAP (9), and a combination of PCA and UMAP (Fig. 4B, C, Fig. S5A-D). In the first three approaches, the121

21-dimensional z score data were compressed to three-dimensional data. In the last approach, the 21-dimensional z score data122

were converted to 21 principal components (PCs) by PCA, and then n PCs were further compressed to three-dimensional data123

by UMAP (Fig. S5D). DBSCAN was used as the clustering method.124

To perform hierarchical clustering, the individual records within a cluster were applied to the clustering process. Z score125

normalization was conducted in every clustering process to normalize the target individual records. The repetition of this126

clustering process continued as long as at least two of the newly generated clusters had a size equaling 20 or larger.127
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The mean of each sleep index was calculated in each identified cluster (Fig. S6B). The mean was regarded as the characteristic128

of each cluster. We divided clusters obtained in hierarchical clustering into five groups depending on Clusters 1 to 5 generated129

by the first clustering process. Ward’s method was used to measure the distances among clusters within their mother cluster130

(i.e. Clusters 1 to 5), where the weight was determined by the each cluster size (Fig. 5A). The distribution of distances131

among clusters was represented as a histogram ranging from the minimum distance to maximum distance. The bin size was132

determined by increasing the number of bins until the gap point, a bin with zero value, occurred. The clusters were merged if133

their distances were lower than the median value of gap (Fig. 5A).134

An outlier dataset was selected by considering six sleep indexes: ST long MN, WT long MN, ST short MN, phase MN,135

period, and amplitude (Fig. 6A). Individual records with abnormal values (upper or lower 2.28 percentiles) in at least one of136

six sleep indexes were selected as an outlier dataset from Clusters 3b and 4b (Fig. 6B) or all clusters (Fig. S12E, F).137

Hyperparameter setting in clustering. Default parameters in the UMAP package were used for all analyses. This package138

is available at https://umap-learn.readthedocs.io/en/latest/index.html. Among the hyperparameters, n_neighbors, (default: 15)139

and min_dist (default: 0.1) manage structures in a high- or low-dimensional field. We tested different values of those two140

parameters with the whole data (Fig. S6A).141

The DBSCAN package implemented in sklearn was used with the default values in all parameters except for min_samples,142

which is the parameter to form a dense region (10, 11). The default value, 5, was used in the whole clustering, and 99 or 115143

were used in the outlier clustering of Clusters 3b and 4b or of all clusters.144

Representative plot. Two types of representative plot were shown in this study. The first type focused on one sleep index.145

Individual record with abnormal values (upper or lower 2.28 percentiles) in the focused sleep index were selected as candidates.146

Euclidean distances from the mean of the whole dataset were calculated using 21 sleep indexes, and the individual record that147

was closest to the mean was shown as the representative plot (Fig. 3B-G). The other type was the representative plot in each148

cluster. Distances from the mean of cluster data were calculated, and representative plots were displayed in ascending order of149

distance (Fig. 5E, F, H, I, K, Fig. 6I-P, Fig. S8, Fig. S11).150

Analysis of age and sex information. The sex percentage was calculated for each cluster, the whole dataset, and the outlier151

dataset from Clusters 3b and 4b. Age was categorized into four groups, the 40s, 50s, 60s, and 70s.152
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Fig. S1. Validation of sleep/wake classification algorithm. (A) An example of ground truth, triaxial acceleration, and power spectrum. In the middle panel, three axes of raw
acceleration data are plotted in different colors. The power spectrum in the bottom panel is shown by heatmap, where the lighter color shows a higher value. (B) The histogram
of jerk among sleep and wake epochs. (C) The power spectrum among sleep and wake epochs. The solid line and the shadowed area shows the mean and the standard
deviation. (D) Results of hyperparameter tuning of XGBoost used in the sleep/wake classification algorithm as 3D plot of summation of accuracy and F measure with two
hyperparameters as x and y axes. The max depth and min child weight represent the maximum tree depth for base learners and the minimum summation of instance weight
(hessian) needed in a child, respectively. The red circle shows the point of maximum score, whose parameter values were used for the sleep/wake classification algorithm. (E,
F) The histogram and distribution of standard deviation and range in nonwearing periods. The gray dashed lines show the threshold used in this study. (G) The performance of
sleep/wake classification algorithm. (H) Flow of thinning process for converting 100 Hz to 50 Hz acceleration data. The left panel shows acceleration data sampled by 100 Hz,
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panel. (I) The result when the sleep/wake classification algorithm trained by 50 Hz acceleration data were applied to reprocessed 100 Hz acceleration data. The 100 Hz
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acceleration data. Acc: Accuracy. F: F measure. Sen: Sensitivity. Spe: Specificity.
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pseudo data consisted of sleep epochs except for wake epochs lasting some time (defined as wake pulse time) as shown in the right bottom panel. (B, C) The sensitivity and
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5% step. The sleep/wake time series data with random nonwearing periods was generated 100 times in each condition and interpolated to wake or sleep periods, then the
chi-square periodogram was applied to these data. Period was about 24 hour with the nonwearing percent lower than 50% in both interpolations to sleep and wake (D). The
second way is choosing continuous epochs and converting them to nonwearing periods. The duration was changed from 0 to 48 hours by a 1-hour step. The sleep/wake
time series data was generated 100 times by changing the start point of nonwearing periods in each condition and interpolated to wake or sleep periods, then the chi-square
periodogram was applied to these data. Period was also about 24 hour in both interpolations (E). (F) The validation of effect of different sleep schedules between workdays and
holidays on the chi-square periodogram. To analyze how the different sleep schedules between workdays and holidays affected a period, we set some days as holidays and
shifted the 8-hour sleep window. The shift of sleep window was changed from -4 to 4 hours by a 0.1-hour step. In each condition, seven types of holidays were simulated:
only the first day, the continuous two days (the first and second, second and third, third and fourth, fourth and fifth, and fifth and last days), and the last day. The simulation
sleep/wake time series data with holidays tended to have less than 24-hour period, which was regarded as the effect of difference between workdays and holidays.
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Fig. S4. Results of large-scale sleep analysis. (A) Distribution of maximum continuous days. Individual records with more than three continuous days were used for the
large-scale sleep analysis. (B) Distribution of length of sleep windows. The solid curves shows the exponential curve fitted to the distribution and the Gaussian curve fitted to
the distribution with a restriction that the peak of curve and the right ridge were the same. The intersection points of two curves, 3.75 hours, was determined to divide sleep
windows into long sleep windows and short sleep windows. (C) The left heatmap shows the correlation coefficient between the sleep indexes. The right histogram shows the
distribution of correlation coefficient. (D-R) Distribution of sleep indexes. The solid line shows the mean. The solid curves shown in (G), (I), (M), and (R) are the curves fitted to
each distribution.
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Fig. S8. Representative plots within clusters of the whole clustering. (A-H) Representative plots shown as double plot. The label of x axis is time.
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Fig. S11. Representative plots within clusters of the outlier clustering. (A-H) Representative plots shown as double plot. The label of x axis is time.
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Table S1. PSG and Axivity recordings (50Hz)

Subject Sex Age

1 F 22
2 M 22
3 F 22
4 M 19
5 F 24
6 M 25
7 M 24
8 F 22
9 M 23
10 M 20
11 F 21
12 M 23
13 F 25
14 M 26
15 F 21
16 M 23
17 F 24
18 M 20
19 F 23
20 F 24
21 F 24

22 * F 23
23 † F 22
24 ‡ M 21
25 M 23
26 F 24
27 M 22

List of subjects recruited for one-night PSG measurements. All participants wore the Axivity device (50 Hz sampling frequency). The subjects
with any symbol (*, †, ‡) also wore Axivity recorded by 100 Hz sampling frequency and the same subject shown in Table S3. F indicates female

and M indicates male in all tables.

Table S2. Long-term Axivity recordings for nonwear detection

Subject Sex Age
Recording

Days

1 M 25 14
2 M 29 14
3 F 23 14
4 F 54 14
5 F 33 14
6 M 30 14
7 M 23 14
8 M 22 14
9 M 21 14
10 F 23 9
11 M 27 14
12 F 23 14
13 F 23 14
14 M 21 14
15 M 38 14
16 M 28 14
17 F 22 14
18 F 24 14
19 F 31 7
20 M 27 14

List of subjects recruited for long-term Axivity recording to validate the nonwear detection algorithm. All participants were asked to record
timestamps when they wore or took off Axivity.
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Table S3. PSG and Axivity recordings (100Hz)

Subject Sex Age

1 * F 23
2 † F 22
3 ‡ M 21
4 M 27
5 F 23
6 F 21
7 M 20
8 M 24
9 M 21
10 F 21
11 F 21
12 M 21

List of subjects recruited for one-night PSG measurements. All participants wore the Axivity device (100 Hz sampling frequency). The subjects
with any symbol (*, †, ‡) also wore Axivity recorded by 50 Hz sampling frequency and the same subject shown in Table S1.

Table S4. Sleep indexes used in this paper

Sleep index Name Feature type

ST long MN Sleep time long mean Daily, Common Index
ST long SD Sleep time long SD Daily, Common Index
WT long MN Wake time long mean Daily, Common Index
WT long SD Wake time long SD Daily, Common Index
ST short MN Sleep time short mean Daily, Common Index
ST short SD Sleep time short SD Daily, Common Index
WT short MN Wake time short mean Daily, Common Index
WT short SD Wake time short SD Daily, Common Index
Long sleep window length MN Long sleep window length mean Daily, Common Index
Long sleep window length SD Long sleep window length SD Daily, Common Index
Long sleep window # MN Long sleep window number mean Daily, Common Index
Long sleep window # SD Long sleep window number SD Daily, Common Index
Short sleep window length MN Short sleep window length mean Daily, Common Index
Short sleep window length SD Short sleep window length SD Daily, Common Index
Short sleep window # MN Short sleep window number mean Daily, Common Index
Short sleep window # SD Short sleep window number SD Daily, Common Index
Sleep percentage Sleep percentage General, Common Index
Phase MN Phase mean Daily, Rhythm-related index
Phase SD Phase SD Daily, Rhythm-related index
Period Period General, Rhythm-related index
Amplitude Amplitude General, Rhythm-related index
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Table S5. Means of sleep indexes among the 17 clusters generated by divisive hierarchical clustering

Sleep index / Cluster 1-1 1-2 2-1 2-2 3-1 3-2-1 3-2-2 4-1

ST long MN (h) 7.32 7.91 5.16 0.00 4.73 5.15 5.76 6.88
ST long SD (h) 1.28 2.06 2.50 0.00 2.65 2.92 2.98 0.95

WT long MN (h) 1.77 2.76 1.20 0.00 0.79 1.26 0.90 1.15
ST long SD (h) 0.87 1.51 0.79 0.00 0.58 1.00 0.63 0.48

ST short MN (h) 0.66 1.16 1.33 2.23 1.53 1.78 1.11 0.42
ST short SD (h) 0.60 0.95 1.09 0.73 1.75 1.83 1.96 0.44

WT short MN (h) 0.42 0.83 0.49 1.18 0.41 0.64 0.15 0.22
ST short SD (h) 0.40 0.67 0.44 0.58 0.42 0.58 0.28 0.25

Long sleep window length MN (h) 7.53 7.42 7.00 0.00 7.13 6.51 6.54 8.03
Long sleep window length SD (h) 2.32 2.99 1.94 0.00 1.26 1.94 2.13 1.20

Long sleep window # MN 1.21 1.45 0.91 0.00 0.77 0.98 1.02 1.00
Long sleep window # SD 0.39 0.77 0.46 0.00 0.40 0.63 0.61 0.00

Short sleep window length MN (h) 0.91 1.15 1.21 1.05 1.45 1.38 2.90 0.76
Short sleep window length SD (h) 0.60 0.83 0.82 0.80 1.01 1.02 0.31 0.43

Short sleep window # MN 1.14 1.70 1.50 3.29 1.45 1.84 0.44 0.82
Short sleep window # SD 0.77 1.06 0.95 1.03 1.07 1.23 0.76 0.66

Phase MN (h) 15.20 15.61 12.92 15.34 15.37 15.38 14.80 15.20
Phase SD (h) 0.72 1.03 6.46 2.63 0.67 0.86 0.63 0.56

Period (h) 23.94 23.87 23.99 23.79 23.94 23.92 23.94 23.93
Amplitude 0.66 0.71 0.57 0.28 0.57 0.61 0.61 0.62

Sleep percentage (%) 33.82 38.61 27.57 10.20 26.52 29.50 28.84 30.84

Sleep index / Cluster 4-2-1 4-2-2 4-2-3 4-2-4 4-2-5 4-2-6 4-2-7 4-3 5

ST long MN (h) 6.24 4.85 5.68 6.61 6.45 7.46 5.09 6.97 7.08
ST long SD (h) 1.46 1.07 1.00 1.09 1.00 0.91 1.08 2.75 0.70

WT long MN (h) 1.14 1.95 0.70 0.87 2.04 0.80 2.28 1.71 1.02
ST long SD (h) 0.53 0.75 0.32 0.44 0.92 0.38 0.90 1.20 0.34

ST short MN (h) 0.75 0.82 0.34 0.02 0.26 0.27 0.16 0.79 0.00
ST short SD (h) 0.76 0.60 0.33 0.05 0.32 0.30 0.19 0.76 0.00

WT short MN (h) 0.32 0.45 0.14 0.01 0.09 0.14 0.06 0.34 0.00
ST short SD (h) 0.35 0.42 0.17 0.02 0.11 0.18 0.08 0.37 0.00

Long sleep window length MN (h) 7.38 6.80 6.38 7.48 8.49 8.26 7.36 9.71 8.09
Long sleep window length SD (h) 1.75 1.50 1.13 1.19 1.60 1.10 1.51 5.26 0.80

Long sleep window # MN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00
Long sleep window # SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.47 0.00

Short sleep window length MN (h) 1.00 0.94 0.63 0.16 0.65 0.67 0.34 1.00 0.00
Short sleep window length SD (h) 0.68 0.77 0.29 0.00 0.30 0.27 0.12 0.68 0.00

Short sleep window # MN 1.09 1.40 0.84 0.13 0.56 0.66 0.56 1.11 0.00
Short sleep window # SD 0.86 0.91 0.67 0.25 0.58 0.60 0.64 0.83 0.00

Phase MN (h) 16.79 15.62 16.08 17.11 14.48 15.98 15.39 17.07 15.22
Phase SD (h) 2.04 1.60 1.24 2.05 1.55 1.69 1.16 2.89 0.48

Period (h) 25.42 25.03 24.77 24.96 25.26 25.17 24.72 25.03 23.93
Amplitude 0.60 0.50 0.56 0.59 0.57 0.66 0.47 0.64 0.61

Sleep percentage (%) 29.62 24.09 25.53 27.89 28.26 32.59 22.30 32.85 29.68
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Table S6. Standard deviations of sleep indexes among the 17 clusters generated by divisive hierarchical clustering

Sleep index / Cluster 1-1 1-2 2-1 2-2 3-1 3-2-1 3-2-2 4-1

ST long MN (h) 1.15 1.40 1.84 0.00 1.23 1.16 0.73 0.93
ST long SD (h) 0.57 1.06 1.01 0.00 0.50 0.55 0.35 0.45

WT long MN (h) 0.92 1.18 0.90 0.00 0.51 0.68 0.39 0.60
ST long SD (h) 0.47 0.59 0.52 0.00 0.36 0.48 0.29 0.29

ST short MN (h) 0.52 0.68 0.92 1.18 0.69 0.70 0.35 0.37
ST short SD (h) 0.40 0.54 0.57 0.31 0.47 0.47 0.49 0.33

WT short MN (h) 0.40 0.50 0.47 0.56 0.35 0.46 0.09 0.25
ST short SD (h) 0.31 0.35 0.32 0.32 0.27 0.33 0.16 0.23

Long sleep window length MN (h) 1.22 1.35 1.53 0.00 1.15 1.12 0.61 1.07
Long sleep window length SD (h) 0.74 1.10 1.28 0.00 0.63 0.76 0.59 0.58

Long sleep window # MN 0.09 0.17 0.27 0.00 0.12 0.12 0.09 0.00
Long sleep window # SD 0.04 0.07 0.22 0.00 0.05 0.07 0.06 0.00

Short sleep window length MN (h) 0.48 0.40 0.49 0.35 0.48 0.35 0.42 0.46
Short sleep window length SD (h) 0.38 0.32 0.34 0.20 0.26 0.20 0.22 0.36

Short sleep window # MN 0.70 0.75 0.90 1.02 0.74 0.80 0.13 0.55
Short sleep window # SD 0.35 0.38 0.37 0.44 0.34 0.40 0.18 0.27

Phase MN (h) 1.14 1.69 3.19 2.11 1.06 1.28 0.87 0.89
Phase SD (h) 0.47 0.69 1.90 2.26 0.48 0.61 0.29 0.32

Period (h) 0.22 0.35 4.71 3.71 0.26 0.25 0.10 0.14
Amplitude 0.07 0.10 0.10 0.10 0.07 0.07 0.05 0.06

Sleep percentage (%) 4.92 5.88 6.59 4.81 4.27 4.51 3.01 3.83

Sleep index / Cluster 4-2-1 4-2-2 4-2-3 4-2-4 4-2-5 4-2-6 4-2-7 4-3 5

ST long MN (h) 0.73 0.81 0.50 0.26 0.37 0.40 0.49 2.27 0.75
ST long SD (h) 0.56 0.33 0.25 0.53 0.48 0.35 0.56 0.92 0.33

WT long MN (h) 0.65 0.95 0.32 0.25 0.46 0.32 0.43 1.12 0.49
ST long SD (h) 0.36 0.38 0.13 0.17 0.26 0.22 0.42 0.85 0.20

ST short MN (h) 0.45 0.46 0.29 0.03 0.10 0.20 0.15 0.56 0.00
ST short SD (h) 0.38 0.23 0.13 0.06 0.09 0.16 0.15 0.48 0.00

WT short MN (h) 0.30 0.22 0.09 0.01 0.06 0.14 0.04 0.27 0.00
ST short SD (h) 0.25 0.17 0.12 0.03 0.06 0.16 0.05 0.28 0.00

Long sleep window length MN (h) 1.04 0.77 0.46 0.33 0.67 0.48 0.62 4.44 0.81
Long sleep window length SD (h) 0.73 0.59 0.28 0.62 0.50 0.39 0.71 4.00 0.40

Long sleep window # MN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00
Long sleep window # SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00

Short sleep window length MN (h) 0.40 0.32 0.17 0.17 0.21 0.39 0.14 0.55 0.00
Short sleep window length SD (h) 0.33 0.21 0.16 0.01 0.14 0.20 0.17 0.43 0.00

Short sleep window # MN 0.55 0.49 0.57 0.12 0.23 0.38 0.25 0.67 0.00
Short sleep window # SD 0.30 0.30 0.28 0.24 0.14 0.21 0.17 0.41 0.00

Phase MN (h) 1.88 0.90 1.24 1.62 0.85 1.29 0.80 2.24 0.78
Phase SD (h) 0.90 0.34 0.30 0.79 0.34 0.52 0.28 1.18 0.27

Period (h) 0.91 0.43 0.35 0.53 0.74 0.96 0.22 2.00 0.13
Amplitude 0.05 0.05 0.03 0.02 0.03 0.03 0.03 0.12 0.05

Sleep percentage (%) 3.22 2.41 1.63 1.10 1.51 1.99 1.63 8.35 3.13
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Table S7. Means of sleep indexes

Sleep index / Cluster 1 2a 2b 3a 3b 4a 4b 5

ST long MN (h) 7.33 5.16 0.00 5.15 4.73 6.37 6.88 7.08
ST long SD (h) 1.29 2.50 0.00 2.92 2.65 1.46 0.95 0.70

WT long MN (h) 1.78 1.20 0.00 1.26 0.79 1.26 1.15 1.02
ST long SD (h) 0.88 0.79 0.00 1.00 0.58 0.63 0.48 0.34

ST short MN (h) 0.67 1.33 2.23 1.78 1.53 0.58 0.42 0.00
ST short SD (h) 0.60 1.09 0.73 1.83 1.75 0.57 0.44 0.00

WT short MN (h) 0.43 0.49 1.18 0.64 0.41 0.26 0.22 0.00
ST short SD (h) 0.40 0.44 0.58 0.58 0.41 0.28 0.25 0.00

Long sleep window length MN (h) 7.53 7.00 0.00 6.51 7.13 7.78 8.03 8.09
Long sleep window length SD (h) 2.33 1.94 0.00 1.94 1.26 2.06 1.20 0.80

Long sleep window # MN 1.21 0.91 0.00 0.98 0.77 0.99 1.00 1.00
Long sleep window # SD 0.40 0.46 0.00 0.63 0.40 0.07 0.00 0.00

Short sleep window length MN (h) 0.91 1.21 1.05 1.38 1.46 0.84 0.76 0.00
Short sleep window length SD (h) 0.61 0.82 0.80 1.02 1.01 0.52 0.43 0.00

Short sleep window # MN 1.14 1.50 3.29 1.84 1.45 0.94 0.82 0.00
Short sleep window # SD 0.78 0.95 1.03 1.23 1.07 0.76 0.66 0.00

Phase MN (h) 15.20 12.92 15.34 15.38 15.37 16.46 15.20 15.22
Phase SD (h) 0.73 6.46 2.63 0.86 0.67 1.97 0.56 0.48

Period (h) 23.94 23.99 23.79 23.92 23.94 25.19 23.93 23.93
Amplitude 0.66 0.57 0.28 0.61 0.57 0.60 0.62 0.61

Sleep percentage (%) 33.90 27.57 10.20 29.50 26.52 29.41 30.84 29.68

Table S8. Standard deviations of sleep indexes

Sleep index / Cluster 1 2a 2b 3a 3b 4a 4b 5

ST long MN (h) 1.16 1.84 0.00 1.16 1.23 1.26 0.93 0.75
ST long SD (h) 0.59 1.01 0.00 0.55 0.50 0.82 0.45 0.33

WT long MN (h) 0.93 0.90 0.00 0.68 0.51 0.81 0.60 0.49
ST long SD (h) 0.48 0.52 0.00 0.48 0.36 0.52 0.29 0.20

ST short MN (h) 0.52 0.92 1.18 0.70 0.69 0.48 0.37 0.00
ST short SD (h) 0.40 0.57 0.31 0.47 0.47 0.41 0.33 0.00

WT short MN (h) 0.40 0.47 0.56 0.46 0.35 0.27 0.25 0.00
ST short SD (h) 0.31 0.32 0.32 0.33 0.27 0.24 0.23 0.00

Long sleep window length MN (h) 1.23 1.53 0.00 1.12 1.15 2.09 1.07 0.81
Long sleep window length SD (h) 0.75 1.28 0.00 0.76 0.63 2.13 0.58 0.40

Long sleep window # MN 0.10 0.27 0.00 0.12 0.12 0.08 0.00 0.00
Long sleep window # SD 0.06 0.22 0.00 0.07 0.05 0.17 0.00 0.00

Short sleep window length MN (h) 0.48 0.49 0.35 0.35 0.49 0.46 0.46 0.00
Short sleep window length SD (h) 0.38 0.34 0.20 0.20 0.26 0.38 0.36 0.00

Short sleep window # MN 0.70 0.90 1.02 0.80 0.74 0.59 0.55 0.00
Short sleep window # SD 0.35 0.37 0.44 0.40 0.34 0.34 0.27 0.00

Phase MN (h) 1.16 3.19 2.11 1.28 1.06 1.81 0.89 0.78
Phase SD (h) 0.47 1.90 2.26 0.61 0.48 0.93 0.32 0.27

Period (h) 0.23 4.71 3.71 0.25 0.26 1.09 0.14 0.13
Amplitude 0.07 0.10 0.10 0.07 0.07 0.08 0.06 0.05

Sleep percentage (%) 4.97 6.59 4.81 4.51 4.27 4.98 3.83 3.13
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Table S9. Means of sleep indexes (outliers)

Sleep index / Cluster 3b-1 3b-2 4b-1 4b-2 4b-3 4b-4 4b-5 4b-6

ST long MN (h) 4.05 2.80 8.77 6.68 6.61 5.14 6.40 6.52
ST long SD (h) 2.72 1.82 1.05 1.07 1.07 0.88 1.06 1.11

WT long MN (h) 0.53 1.66 1.70 1.24 1.02 2.85 0.25 1.10
ST long SD (h) 0.45 1.21 0.76 0.54 0.44 0.79 0.11 0.44

ST short MN (h) 2.09 1.39 0.59 0.56 0.44 0.44 0.47 0.55
ST short SD (h) 1.85 1.24 0.50 0.53 0.46 0.42 0.50 0.54

WT short MN (h) 0.47 0.84 0.39 0.26 0.20 0.31 0.17 0.24
ST short SD (h) 0.40 0.77 0.38 0.28 0.22 0.33 0.20 0.26

Long sleep window length MN (h) 6.60 6.34 10.47 7.91 7.63 7.99 6.66 7.62
Long sleep window length SD (h) 1.24 1.18 1.58 1.36 1.29 1.31 1.10 1.32

Long sleep window # MN 0.69 0.69 1.00 1.00 1.00 1.00 1.00 1.00
Long sleep window # SD 0.43 0.43 0.00 0.00 0.00 0.00 0.00 0.00

Short sleep window length MN (h) 1.47 1.35 0.84 0.87 0.79 0.77 0.79 0.84
Short sleep window length SD (h) 1.00 0.97 0.54 0.52 0.40 0.46 0.44 0.50

Short sleep window # MN 1.82 1.78 1.12 0.93 0.82 0.96 0.80 0.92
Short sleep window # SD 1.11 1.09 0.75 0.69 0.65 0.71 0.65 0.70

Phase MN (h) 15.38 15.88 14.93 12.94 15.38 15.43 15.26 17.92
Phase SD (h) 0.77 0.92 0.58 0.67 1.21 0.67 0.53 0.86

Period (h) 23.95 23.96 23.94 23.93 23.18 23.90 23.95 23.92
Amplitude 0.57 0.41 0.75 0.62 0.61 0.48 0.62 0.61

Sleep percentage (%) 26.06 18.13 39.60 30.61 29.80 23.79 28.98 29.89

Table S10. Standard deviations of sleep indexes (outliers)

Sleep index / Cluster 3b-1 3b-2 4b-1 4b-2 4b-3 4b-4 4b-5 4b-6

ST long MN (h) 1.28 1.10 0.68 0.90 0.83 1.08 0.75 0.95
ST long SD (h) 0.53 0.47 0.55 0.51 0.46 0.37 0.42 0.51

WT long MN (h) 0.41 0.70 0.91 0.49 0.47 0.72 0.13 0.55
ST long SD (h) 0.33 0.40 0.45 0.28 0.27 0.37 0.07 0.26

ST short MN (h) 0.87 0.66 0.49 0.43 0.35 0.37 0.39 0.47
ST short SD (h) 0.51 0.39 0.35 0.35 0.33 0.28 0.34 0.38

WT short MN (h) 0.36 0.55 0.36 0.24 0.21 0.30 0.19 0.26
ST short SD (h) 0.25 0.33 0.28 0.23 0.21 0.26 0.20 0.24

Long sleep window length MN (h) 1.22 1.13 1.12 1.05 0.97 1.47 0.77 1.09
Long sleep window length SD (h) 0.69 0.67 0.85 0.64 0.57 0.59 0.44 0.62

Long sleep window # MN 0.16 0.18 0.00 0.02 0.00 0.00 0.00 0.00
Long sleep window # SD 0.05 0.06 0.01 0.03 0.00 0.01 0.00 0.00

Short sleep window length MN (h) 0.43 0.45 0.43 0.47 0.48 0.44 0.42 0.47
Short sleep window length SD (h) 0.23 0.25 0.35 0.37 0.35 0.36 0.35 0.37

Short sleep window # MN 0.82 0.91 0.66 0.55 0.47 0.64 0.48 0.60
Short sleep window # SD 0.36 0.35 0.31 0.28 0.29 0.31 0.27 0.29

Phase MN (h) 1.37 1.36 0.93 1.04 0.96 1.08 0.66 0.81
Phase SD (h) 0.61 0.60 0.32 0.42 0.57 0.37 0.32 0.57

Period (h) 0.42 0.40 0.12 0.16 0.31 0.18 0.13 0.17
Amplitude 0.06 0.07 0.05 0.05 0.05 0.06 0.04 0.06

Sleep percentage (%) 4.10 3.87 2.64 3.42 3.30 4.55 2.84 3.90
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Table S11. Summary of insomnia-like clusters

Cluster Sleep duration Fragmented Long-term awake Short-term awake

1 ↑ ↑ ↑ ↑ ↑
3a - ↑ ↑ ↑ ↑ ↑ ↑
3b ↓ ↑ ↑ -

3b-1 ↓ ↑ ↑ ↑ ↑ ↑ ↓
3b-2 ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑
4b-4 ↓ ↓ - ↓ ↑ ↑ ↑
4b-5 - - ↑ ↑ ↓ ↓

The arrows represent how far each sleep-related indicator in the upper row is from the mean of the whole dataset in terms of seven levels (from ↓↓↓
to ↑↑↑). “Fragmented” parameter represents the summation of the number of long sleep window MN and short sleep window MN. “Long-term
midawake” represents how midawake duration increases if the threshold used to connect sleep episodes to make sleep windows is 120 minutes.

“Short-term midawake” represents the summation of WT long MN and WT short MN. The actual values are shown in Table S12.

Table S12. Values of insomnia-like clusters

Cluster Sleep duration (%) Fragmented Long-term awake (min) Short-term awake (h)

1 33.90 2.35 1.08 2.21
3a 29.50 2.82 1.91 1.90
3b 26.52 2.21 1.60 1.20

3b-1 26.06 2.51 2.44 1.00
3b-2 18.13 2.47 1.15 2.50
4b-4 23.79 1.96 0.47 3.15
4b-5 28.98 1.80 1.74 0.43

all mean 30.33 1.87 0.79 1.38
all sd 4.34 0.65 8.48 0.77
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