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Conformational fluctuations of a protein molecule are important to its function, and it is known that
environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function
by changing the conformational fluctuations. However, it is difficult to systematically understand the role of
environmental molecules because intermolecular interactions related to the conformational fluctuations are
complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we
develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular
interactions. We show that these perturbation analyses can be realized by performing (i) a principal component
analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and
(ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative
densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent
intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply
them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components
discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation
between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the
large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components
clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to
each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate
with retaining distance information, we conclude that the DIPA is a more practical method compared with the IPA.
To test the feasibility of the DIPA for larger molecules, we apply the DIPA to the ten-residue chignolin folding in
explicit water. The top three principal components identify the four states (native state, two misfolded states, and
unfolded state) and their corresponding eigenfunctions identify important chignolin-water interactions to each
state. Thus, the DIPA provides the practical method to identify conformational states and their corresponding
important intermolecular interactions with distance information.
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I. INTRODUCTION

Conformational fluctuations of a protein molecule are
important to its function. Environmental molecules such as
solvents [1,2] and ligands [3–6] significantly affect protein
function by modifying its conformational fluctuations. How-
ever, it has been difficult to systematically analyze such
environmental effects on the conformational fluctuation of
proteins. Several methods have been developed to analyze the
conformational fluctuations of a protein. For example, correla-
tion analysis using atomic coordinates [7,8] and inter-residue
interaction energy [9,10] reveal communication within the
protein. The principal component analysis (PCA) [11] using
atomic coordinates [12–14], atomic pair distances [15], and
mapped dihedral angles [16,17] decomposes the fluctuations
into large uncorrelated fluctuations. However, these methods
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are based only on the analysis of protein coordinates, so
direct information regarding the environmental molecules is
lost. Therefore, although the contributions of environmental
molecules might be implicitly represented in conformational
fluctuations of a protein, it is difficult to explicitly evaluate
their direct contribution to the conformational fluctuations of
a protein.

To understand the molecular conformational fluctuations
based on their atomic interactions, we previously introduced
the potential energy PCA (PEPCA) [18] in which we can
identify molecular conformational fluctuations (or states) by
the principal components and the important interactions by
the corresponding eigenvectors. Compared to other methods,
PEPCA can potentially be applied to evaluate the direct contri-
bution of environmental molecules because PEPCA is based on
the analyzing potential energies, which can represent not only
intramolecular but also intermolecular atomic interactions.
However, directly applying PEPCA to investigate the contri-
bution of environmental molecules presents some difficulties.
This is because PEPCA using intermolecular potential energy
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terms identify the intermolecular interactions that induce the
largest conformational change of the “whole” system, namely,
a protein and its environmental molecules (see Appendix A).
Therefore, PEPCA will collect the large fluctuations of the
environmental molecules that may be irrelevant to confor-
mational fluctuations of the target protein. To understand
environmental effects on conformational fluctuations of the
target protein, we need to focus on the conformational change
of the target protein rather than the whole system. In the present
study, we generalize our previous results [18] to evaluate
environmental effects on the conformational change of the
target molecule.

This article is organized as follows: With respect to arbitrary
intermolecular perturbations, we show that changes in the
conformational distribution of the target molecule due to
the perturbation can be evaluated by the variance of the
conditional expectation of the perturbation potential energy.
By using this result, we introduce (i) distance-independent
and (ii) distance-dependent perturbations of intermolecular
interactions. Then, we search the perturbations that induce
the largest change in the conformational distribution of the
target molecule. We show that these can be solved by
(i) PCA using conditional expectations of truncated and shifted
intermolecular potential energy terms and (ii) functional
principal component analysis (FPCA) [11,19] using products
of intermolecular forces and conditional cumulative densities.
We refer to these analyses as (i) intermolecular perturbation
analysis (IPA) and (ii) distance-dependent intermolecular
perturbation analysis (DIPA), respectively. For comparison
of the IPA and the DIPA, we applied them to the alanine
dipeptide isomerization in explicit water. We see that the
DIPA is more practical compared with the IPA. To test
the feasibility of the DIPA for larger molecules, we apply
the DIPA to the ten-residue chignolin folding in explicit water.
Finally, we discuss the computational cost of the DIPA for
protein molecules.

II. THEORY

A. Change in conformational distribution of target molecule
due to perturbation

We consider the change in the conformational distribution
of the target molecule induced by a general perturbation. The
molecular system is described by the potential energy V (q,q′),
where q are the coordinates of the target molecule and q′
are the coordinates of the environmental molecules. In this
case, the canonical distribution of the whole system at inverse
temperature β is represented as

ρ(q,q′) = 1

Z
e−βV (q,q′), (1)

where Z is the partition function. Next, we perturb the system
by adding a perturbation potential energy �V (q,q′):

V ′(q,q′) = V (q,q′) + �V (q,q′). (2)

The perturbed canonical distribution ρ ′(q,q′) is represented as

ρ ′(q,q′) = 1

Z′ e
−βV ′(q,q′) = e−β�V (q,q′)

〈e−β�V 〉 ρ(q,q′), (3)

where we defined the expectation value as

〈e−β�V 〉 ≡
∫

e−β�V ρ(q,q′)dqdq′. (4)

By using Eq. (3), the perturbed conformational distribution of
the target molecule is

ρ ′(q) =
∫

ρ ′(q,q′)dq′ = 〈e−β�V |q〉
〈e−β�V 〉 ρ(q), (5)

where the conditional expectation is defined as

〈e−β�V (q,q′)|q〉 ≡
∫

e−β�V (q,q′)ρ(q′|q)dq′. (6)

Next, we measure the change in conformational distribution
of the target molecule due to the perturbation. For this purpose,
we use the Kullback-Leibler divergence (or relative entropy)
[20–24]

D(ρ ′(q)||ρ(q)) ≡
∫

ρ ′(q) ln
ρ ′(q)

ρ(q)
dq � 0. (7)

This can be considered to be the expectation of the log-ratio
[ln ρ ′(q)/ρ(q)] under the perturbed equilibrium state. By using
the identity ρ ′ = ρ exp(ln ρ ′/ρ), Eq. (7) can be expressed by
expectations under the unperturbed equilibrium state as

D(ρ ′(q)||ρ(q)) =
∞∑

k=1

1

(k − 1)!

〈(
ln

ρ ′(q)

ρ(q)

)k〉
. (8)

By applying cumulant expansions to Eq. (5), the ratio change
by the perturbation can be expanded as follows:

ln
ρ ′(q)

ρ(q)
= −β (〈�V | q〉 − 〈�V 〉)

+ 1

2
[var(β�V |q) − var(β�V )] + · · · , (9)

where var(β�V ) and var(β�V |q) are the variance and the
conditional variance of β�V , respectively. By using Eq. (9)
and the equality [25]

var(β�V ) = var(β 〈�V |q〉) + 〈var(β�V |q)〉 (10)

(sometimes called the law of total variance), Eq. (8) can be
expanded as

D(ρ ′(q)||ρ(q)) = 1
2 var(β 〈�V |q〉) + · · · . (11)

Thus, within the second-order approximation, we can evaluate
the change in the conformational distribution of the target
molecule by the variance of the conditional expectation of
the perturbation potential energy under the unperturbed equi-
librium state. In Appendix A, we summarize the relationship
between the change in the conformational distribution of the
whole system and the target molecule by the perturbation.

B. Intermolecular perturbation analysis

We develop a perturbation analysis of intermolecular
interactions. One natural perturbation of an interaction is to
multiply the original force with 1 + λ by introducing a pertur-
bation parameter λ. With this perturbation, the interaction is
strengthened when λ > 0 and it is weakened when λ < 0. If
a perturbation to a certain interaction significantly affects the
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conformational distribution of the target molecule, we consider
it to be an “important” interaction. In the current ordinary
classical force fields, intermolecular interactions consist of
van der Waals interactions or electrostatic interactions. Since
they only depend on the atomic distance r , we denote a
nonbonded potential energy between two atoms as φ(r). To
avoid dealing the infinite long-range interaction, we only
perturb the interactions within some cutoff length rc. By
introducing a truncated and shifted potential energy [26]

φ(r; rc) ≡
{
φ(r) − φ(rc) for r � rc,

0 for r > rc,
(12)

the above-mentioned perturbation can be realized by adding
potential energy λφ(r; rc) to the original potential energy.
By increasing the cutoff, we check the convergence of the
perturbation analysis.

Then, we perturb all intermolecular interactions by in-
troducing perturbation parameters λ = (λ1, . . . ,λM )T . If the
system includes atoms that have permutation symmetry [27],
the perturbed potential energy is not invariant to the permu-
tation of the atoms. To keep permutation invariance in the
perturbed potential energy, perturbation parameters must have
the identical values when the corresponding potential energy
terms include atoms with permutation symmetry. With these
considerations, we can perturb all intermolecular interactions
with permutation invariance by adding perturbation potential
energy

�V (q,q′) =
M∑

k=1

λkVk(q,q′), (13)

where V(q,q′) = [V1(q,q′), . . . ,VM (q,q′)]T are defined as

Vk(q,q′) ≡
∑
i∈Ik

∑
j∈Jk

φk(rij ; rc). (14)

Labels Ik and Jk are the set of atoms with permutation
symmetry in the target molecule and the environmental
molecules, respectively. Although a perturbation within the
environmental molecule (such as water-water interactions) can
change the conformational distribution of the target molecule,
for simplicity we only perturb interactions between the target
molecule and environment molecules (such as protein-water
interactions) in this study.

To identify important intermolecular interactions, we find
a perturbation λ that induces a large change in the con-
formational distribution. For this purpose, we search for λ

that maximizes D (ρλ(q)||ρ(q)) under the constraint |λ| = δ,
where ρλ(q) is the conformational distribution of the target
molecule under the perturbation described by Eq. (13). Within
the second-order approximation, this is achieved by finding λ

that maximizes the variance in Eq. (11). By using Eq. (13), the
variance is represented as

var(β〈�V |q〉) = var

(
β

M∑
k=1

λk〈Vk|q〉
)

(15)

= λT cov(β〈V|q〉)λ, (16)

where cov (β 〈V| q〉) is the covariance matrix whose (i,j ) entry
is the covariance between β 〈Vi | q〉 and β〈Vj |q〉. Since the

covariance matrix is a positive semidefinite matrix, it can
be diagonalized with non-negative eigenvalues σ 2

1 , . . . ,σ 2
M ,

which are sorted in descending order, and the corresponding
orthogonal matrix U = (u1, . . . ,uM ) [11,28] as

cov(β〈V|q〉)ui = σ 2
i ui . (17)

The ith eigenvector perturbation λ = δui maximizes the
variance Eq. (15) under |λ| = δ and λ · u1 = 0, . . . ,λ · ui−1 =
0. By using Eqs. (11), (16), and (17), the change in the
conformational distribution of the target molecule due to
λ = δui becomes

D(ρδui
(q)||ρ(q)) = 1

2δ2σ 2
i + · · · . (18)

Thus, we can find the important combinations of the inter-
actions to the target molecule in the top eigenvectors. This
procedure can be considered to be the PCA [11] using β 〈V| q〉
or −β 〈V| q〉.

Next, we consider the contribution of the ith eigenvector
to the conformational distribution of the target molecule.
The perturbation λ = δui corresponds to the potential energy
perturbation [Eq. (13)] as

�V (q,q′) = δ

M∑
k=1

UkiVk(q,q′). (19)

By using Eqs. (9) and (19), the change in the ratio (or
population shift) of the conformation q induced by the
perturbation λ = δui is

ln
ρδui

(q)

ρ(q)
= δgi(q) + · · · , (20)

where we have introduced

gi(q) ≡ −βui · (〈V| q〉 − 〈V〉) . (21)

By definition, gi(q) is the ith principal component of the
PCA using −β 〈V| q〉. Note that these principal components
have the opposite sign with respect to the definition in our
previous article [18], which uses βV(q). Performing PCA
using −β 〈V| q〉 instead of β 〈V| q〉 is useful to visualize the
results by the biplot [29,30], as we will see in the numerical
results. By using Eqs. (19) and (20), we can analyze in detail
the effects of the ith eigenvector on the target molecular
conformational distribution. We consider the case δ > 0. From
Eq. (19), the perturbation δui strengthens the kth potential
energy term Vk if Uki > 0, and it weakens this term if Uki < 0.
From Eq. (20), the perturbation δui increases the ratio of q
if gi(q) > 0, and decreases it if gi(q) < 0 in the first-order
approximation. These results are summarized in Table I.

In summary, the PCA using −β 〈V| q〉 identifies the
combinations of the intermolecular interactions that are
important for the conformational distribution of the target
molecule. We refer to the PCA using −β 〈V| q〉 as the IPA.
The ith eigenvector ui is the ith important combination of
the interactions [Eq. (19)], the ith eigenvalue σ 2

i measures the
change in the conformational distribution [Eq. (18)], and the
ith principal component gi(q) represents the change in the ratio
of the target molecular conformation q due to the perturbation
[Eq. (20)]. The detailed contributions of the interactions to the
target molecular conformation are given in Table I. If we only
perturb interactions within the target molecule, the equality
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TABLE I. Effects of the ith eigenvector perturbation. A change in
the weight of a truncated and shifted intermolecular potential energy
term Vk is determined by Eq. (19). The ratio change in q is determined
by Eq. (20). The term “increase” or “decrease” indicates the ratio
change for the first-order approximation.

The kth interaction Ratio of q

Uki > 0 Uki < 0 gi(q) > 0 gi(q) < 0

δ > 0 Strengthen Weaken Increase Decrease
δ < 0 Weaken Strengthen Decrease Increase

〈V| q〉 = V(q) holds. Therefore, IPA includes the PEPCA that
corresponds to the intramolecular perturbation analysis [18].
In this sense, IPA is a natural generalization of PEPCA.

C. Distance-dependent intermolecular perturbation analysis

We develop a perturbation analysis of intermolecular
interactions with distance dependence by generalizing the
IPA. We consider the distance-dependent perturbation of an
intermolecular interaction between the ith atom in the target
molecule and the j th atom in the environmental molecules. We
represent the force acting on the ith atom from the j th atom
through van der Waals or electrostatic interaction as Fji , and
the distance between the ith atom and the j th atom as rij . With
this notation, one natural distance-dependent perturbation is
represented as

[1 + λ(rij )]Fji , (22)

where the distance-dependent perturbation function λ(rij ) is
introduced. To derive the potential energy that realizes the
perturbation given in Eq. (22), we first note that the force Fji

is the gradient of the corresponding potential energy φ(rij ).
Therefore, if we introduce coordinates of the ith atom as
(xi,yi,zi), the force becomes

Fji = −
(

∂

∂xi

,
∂

∂yi

,
∂

∂zi

)
φ(rij ) = F (rij ) eji , (23)

where we have introduced

F (r) ≡ −dφ(r)

dr
(24)

and eji is a three-dimensional unit vector directed from atom j

to atom i. By using Eqs. (23) and (24), the perturbation given
in Eq. (22) can be realized by adding a potential energy

φ(r; rc,λ) ≡
{∫ rc

r
λ(r ′)F (r ′)dr ′ for r � rc,

0 for r > rc,
(25)

where we have introduced the cutoff distance rc for conve-
nience in the following analyses. If we ignore the dependence
on distance by using λ(r) = λ, Eq. (25) reduces to

φ(r; rc,λ) = λφ(r; rc), (26)

where φ(r; rc) is defined in Eq. (12). The perturbation is
identical to that of the IPA. Therefore, Eq. (25) is a natural
generalization of the perturbation used in the IPA. Then,
we perturb all intermolecular interactions with permutation

invariance by adding the potential energy �V (q,q′) with
perturbation parameters λ(r) = [λ1(r), . . . ,λM (r)]T as

�V (q,q′) =
M∑

k=1

�Vk(q,q′), (27)

where

�Vk(q,q′) ≡
∑

i∈Ik,j∈Jk

φk(rij ; rc,λk). (28)

The meaning of labels Ik and Jk are identical in Sec. II B.
Next, we quantify the perturbation with Eq. (11). By

introducing the conditional density niJk
(r|q) of Jk atoms at

a distance r from the ith atom for a given q, the conditional
expectation of Eq. (28) can be expressed as

〈�Vk| q〉 =
∑
i∈Ik

∫ rc

0

(∫ rc

r

λk(r ′)Fk(r ′)dr ′
)

niJk
(r|q) dr.

(29)

By defining the conditional cumulative density

NiJk
(r|q) ≡

∫ r

0
niJk

(r ′|q) dr ′ (30)

and using the equality

dNiJk
(r|q)

dr
= niJk

(r|q), (31)

the integration by parts of Eq. (29) leads to

〈�Vk| q〉 =
∫ rc

0
λk(r)fk(r|q) dr, (32)

where we have defined f(r|q) = [f1(r|q), . . . ,fM (r|q)]T as

fk(r|q) ≡ Fk(r)
∑
i∈Ik

NiJk
(r|q). (33)

As shown in Appendix B, fk(r|q) is also characterized by
a derivative of 〈Vk| q〉 used in the IPA. By using Eqs. (27)
and (32), the variance in Eq. (11) is expressed as

var(β 〈�V | q〉)

= var

(
β

M∑
k=1

∫ rc

0
λk(r)fk(r|q) dr

)
(34)

=
∫ rc

0

∫ rc

0
λ(r)T cov(βf(r|q),βf(r ′|q))λ(r ′)drdr ′, (35)

where cov(βf(r|q),βf(r ′|q)) is an M × M covariance matrix
whose i,j element is the covariance between βfi(r|q) and
βfj (r ′|q) for given r and r ′.

By introducing a covariance operator Ĉ [19] that is defined
as

Ĉλ ≡
∫ rc

0
cov(βf(r|q),βf(r ′|q))λ(r ′) dr ′ (36)

and an inner product

〈λ,λ′〉 ≡
∫ rc

0
λ(r)T λ′(r) dr, (37)

Eq. (35) can be represented as

var(β〈�V |q〉) = 〈λ,Ĉλ〉 � 0. (38)
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By using the equality

cov(βf(r|q),βf(r ′|q))T = cov(βf(r ′|q),βf(r|q)), (39)

we can show that

〈Ĉλ,λ′〉 = 〈λ,Ĉλ′〉. (40)

Therefore, Ĉ is a self-adjoint operator. Furthermore, the non-
negativity of the variance [Eq. (38)] indicates that Ĉ is the
positive-semidefinite operator. Thus, Ĉ can be diagonalized by
the orthonormal eigenfunctions ui(r) = [U1i(r), . . . ,UMi(r)]T

with the corresponding non-negative eigenvalues σ 2
i (which

are sorted in descending order) as

Ĉui = σ 2
i ui . (41)

The orthonormality of the eigenfunctions is represented as

〈ui ,uj 〉 = δi,j . (42)

Generally, the eigenfunctions ui(r) constitute an infinite series
i = 1, . . . ,∞.

To identify important intermolecular interactions with their
distance information, we determine λ(r) that maximizes
D(ρλ(q)||ρ(q)) under the constraint |λ| = δ, where the norm
|λ| is defined as |λ| ≡ √〈λ,λ〉. Within the second-order ap-
proximation [Eq. (11)], the maximization is equivalent to max-
imizing var (β 〈�V | q〉) under the constraint |λ| = δ. Because
the variance can be represented as the quadratic form of the co-
variance operator Ĉ [Eq. (38)], the variance maximization can
be solved by the diagonalization [Eq. (41)] [19]. In particular,
a perturbation λ(r) = δui(r) maximizes the variance under the
constraints |λ| = δ and 〈λ,u1〉 = 0, . . . , 〈λ,ui−1〉 = 0. By the
perturbation λ(r) = δui(r), Eq. (11) becomes Eq. (18). Thus,
eigenfunctions with larger eigenvalue represent the important
intermolecular interactions with their distance information.
We note that finding λ(r) that maximizes the functional
form of Eq. (34) under the constraints |λ| = δ and 〈λ,u1〉 =
0, . . . , 〈λ,ui−1〉 = 0 can be considered as the FPCA [11,19]
using βf(r|q) or −βf(r|q). By the perturbation λ(r) = δui(r),
Eq. (9) becomes Eq. (20), where gi(q) is defined as

gi(q) ≡ 〈ui(r),−β[f(r|q) − 〈f(r|q)〉]〉. (43)

By definition, gi(q) is the ith principal component of the FPCA
using −βf(r|q).

In summary, performing the FPCA using −βf(r|q) identi-
fies the important combinations of the intermolecular interac-
tions to the target molecule with their distance information.
We refer to the FPCA using −βf(r|q) as the DIPA. In a
manner similar to the PEPCA and the IPA, we can interpret
the eigenfunctions, eigenvalues, and principal components of
DIPA in terms of the perturbation as follows: The ith eigen-
function perturbation λ(r) = δui(r) induces the largest change
in the conformational distribution of the target molecule under
the constraints |λ| = δ and 〈λ,u1〉 = 0, . . . , 〈λ,ui−1〉 = 0; the
ith eigenvalue σ 2

i measures the change in the conformational
distribution of the target molecule by 1

2δ2σ 2
i [Eq. (18)]; the ith

principal component gi(q) represents the ratio change of the
conformation q of the target molecule by δgi(q) [Eq. (20)].

Finally, we summarize perturbation analyses of atomic
interactions. The common idea is to find perturbations of

weaken

(b) Intramolecular perturbation

(c) Intermolecular perturbation (d) Distance-dependent
intermolecular perturbation

strengthen

target molecule

q

(a) Perturbation analysis

q

environmental molecules

PCA using -β<V|q> (IPA) FPCA using -βf(r|q) (DIPA)

ρ(q)

PCA using -β V(q) (PEPCA)

ρ'(q)

ΔV

Atom : 

Perturbation : 
Interaction : bonded nonbonded

FIG. 1. (Color online) (a) Perturbation analysis of atomic inter-
actions. Atomic interactions are perturbed by adding a perturbation
potential energy �V . The perturbation effect is measured by the
change in the conformation distribution of the target molecule
q. (b) Perturbation analysis of intramolecular interactions, which
can be solved by the PCA using −βV(q) (PEPCA) [18], where
V(q) are intramolecular potential energy terms. (c) Perturbation
analysis of intermolecular interactions, which can be solved by
performing the PCA using −β 〈V| q〉 (IPA), where 〈V| q〉 are
conditional expectations of truncated and shifted intermolecular
potential energy terms. (d) Perturbation analysis of intermolecular
interactions with dependence on distance, which can be solved
by performing the FPCA using −βf(r|q) (DIPA), where f(r|q)
are products of intermolecular forces and conditional cumulative
densities as defined in Eq. (33).

atomic interactions that significantly change the conforma-
tional distribution of the target molecule [Fig. 1(a)]. The
difference is the three ways in which the atomic interactions are
perturbed: (i) If we consider perturbations of intramolecular
interactions [Fig. 1(b)], the perturbation analysis can be solved
by the PCA using −βV(q), where V(q) are intramolecular
potential energy terms (PEPCA) [18]. (ii) If we consider
perturbations of intermolecular interactions [Fig. 1(c)], the per-
turbation analysis can be solved by the PCA using −β 〈V| q〉,
where 〈V| q〉 are conditional expectations of truncated and
shifted intermolecular potential energy terms. (iii) If we
consider distance-dependent perturbations of intermolecular
interactions [Fig. 1(d)], the perturbation analysis can be solved
by the FPCA using −βf(r|q), where f(r|q) are products of
intermolecular forces and conditional cumulative densities
defined in Eq. (33) (DIPA).

D. IPA and DIPA procedure

For IPA and DIPA, we need to estimate the conditional
expectations and the conditional cumulative densities, respec-
tively. These require additional molecular dynamics (MD)
simulations of environmental molecules q′ with a fixed target
molecule q to sample q′ that follows ρ(q′|q). For this purpose,
first, we generate coordinates q and q′ that follow the canonical
distribution ρ(q,q′). This can be done using an MD simulation
that can generate the canonical distribution such as a Langevin
dynamics [Fig. 2(a)]. Then, we can perform PEPCA [18] by
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FIG. 2. Procedure to perform PEPCA, IPA, and DIPA. (a) An MD
simulation of the target molecule q and the environmental molecules
q′. (b1) Calculation of intramolecular potential energy terms V(q).
(b2) PCA using −βV(q) (PEPCA [18]). (c) MD simulations of
the environmental molecules q′ with the target molecule q fixed.
(d1) Calculation of conditional expectations of truncated and shifted
intermolecular potential energy terms 〈V| q〉. (d2) PCA using
−β〈V| q〉 (IPA). (e1) Calculation of products of intermolecular forces
and conditional cumulative densities defined in Eq. (33). (e2) FPCA
using −βf(r|q) (DIPA).

performing PCA using −βV(q) [Fig. 2(b)]. To get the concrete
expression for ρ(q′|q), we divide the potential energy of the
whole system V (q,q′) into three terms: V (q,q′) = VT(q) +
VTE(q,q′) + VE(q′). The terms VT(q), VTE(q,q′), and VE(q′)
are the target molecular term, target-environmental term, and
environmental term, respectively. Then the distribution ρ(q′|q)
is given as

ρ(q′|q) = ρ(q,q′)∫
ρ(q,q′)dq′ = 1

Z(q)
e−β[VTE(q,q′)+VE(q′)]. (44)

This distribution can be considered to be a canonical distribu-
tion of q′ for a given q and the potential energy VTE(q,q′) +
VE(q′) at inverse temperature β. Therefore, an MD simulation
with the given q and the potential energy VTE(q,q′) + VE(q′)
generates q′ following the distribution ρ(q′|q). We then iterate
such MD simulations for various different q, which can be
sampled from the original MD simulation [Fig. 2(c)]. After
this iteration, we can finally perform the IPA [Fig. 2(d)] and
the DIPA [Fig. 2(e)].

III. NUMERICAL RESULTS

A. PEPCA of the alanine dipeptide isomerization
in explicit water

For comparison of the IPA and the DIPA, we apply them
to the alanine dipeptide isomerization in explicit water. In
this system, the target molecule (peptide) has multiple stable
states, and the environment molecules (water) have important

roles regarding the states via intermolecular (peptide-water)
interactions. We first apply PEPCA to understand the contribu-
tion of intrapeptide interactions to the peptide conformational
distribution. Next, we apply IPA and DIPA to understand
the contribution of peptide-water interactions to the peptide
conformational distribution.

MD simulations were performed by MD package AMBER

10 [31] with the ff03 force field [32] and TIP3P water [33].
Water molecules were included in a cubic box whose edge
length was determined to be the minimum distance between
peptide atoms and the faces of the box over 15 Å. As a result,
2192 water molecules were contained within the unit cell.
Bonds involving hydrogen in the peptide were constrained by
SHAKE [34], and TIP3P water molecules were constrained
by SETTLE [35]. A direct-space cutoff distance of 10 Å
was used for the Lennard-Jones and electrostatic interactions.
Long-range electrostatic interactions were calculated using
particle mesh Ewald (PME) [36]. A 100 ps NpT (1 atm and
300 K) MD simulation was performed to equilibrate the water
density, which was stationary around 30 ps and resulted in a
(40.6 Å)3 cubic periodic box at 100 ps. Then a 10 ns NVT (300
K) Langevin dynamics simulation with a collision frequency
of 1.0 ps−1 by integration with a 2 fs time step was performed.
The coordinates were saved every 1 ps, and 10 000 snapshots
were used for the analysis. From the Ramachandran plot
(Fig. 3), we see that the peptide has three stable states around
(φ,ψ) = (−80◦,−20◦), (φ,ψ) = (−80◦,150◦), and (φ,ψ) =
(−150◦,150◦). We call these states α, PPII, and β based on their
corresponding secondary structures of α helix, polyproline II
helix, and β sheet, respectively.

FIG. 3. (Color online) Ramachandran plot of the alanine dipep-
tide in explicit water. Angles φ and ψ are the dihedral angles indicated
by the curved arrows. Dots represent the scatter plot of φ and ψ

(Ramachandran plot). The three-dimensional structures labeled α,
PPII, and β are snapshots at 120, 350, and 370 ps, respectively.
The structures were rendered by a molecular visualization program
(VMD) [37].
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TABLE II. Number of the intrapeptide potential energy terms
with permutation invariance. The permutation symmetry is relabeling
hydrogens in a methyl group. The number of all potential energy terms
ignoring the permutation invariance is given in parentheses.

Potential type No.

Bond 15(21)
Angle 24(36)
Dihedral 31(45)
van der Waals 84(174)
Electrostatic 84(174)

Total 238(450)

After calculating V(q) with permutation invariance
(Table II) for each of the 10 000 snapshots, PEPCA was per-
formed [Fig. 2(b)]. The PCA was implemented by the singular
value decomposition (SVD) after centering the data [11]. The
top three PEPCA eigenvalues overwhelm the other eigenvalues
(Fig. 4). Therefore, we expect that the three corresponding
eigenvectors are sufficient to understand the intrapeptide
interactions that are important to the peptide conformational
distribution. In fact, we can clearly discriminate three stable
states by only the first two principal components that are
visualized when we plot the components of the first and the
second eigenvectors (Uk1,Uk2) (squares in Fig. 5) and the first
and the second principal components [g1(q),g2(q)] (dots in
Fig. 5). This plot is known as the biplot [29,30]. As shown in
Fig. 5, the first principal components discriminate between the
α and the PPII + β states, and the second principal components
discriminate between the PPII and the β states. Therefore, we
can expect that the intrapeptide interactions that are important
to these three states are identified by the first and the second
eigenvectors.

The perturbation effects by the eigenvectors summarized in
Table I are easily read from the biplot (Fig. 5) as follows.
First, we consider the first eigenvectors. If we strengthen

i

σ
i2

FIG. 4. PEPCA eigenvalues of the alanine dipeptide in explicit
water.

the interactions when Uk1 < 0 (left squares in Fig. 5) and
weaken when Uk1 > 0 (right squares in Fig. 5), the ratio of the
peptide conformation q will increase when g1(q) < 0 (left
dots in Fig. 5) or decrease when g1(q) > 0 (right dots in
Fig. 5). Similarly, if we strengthen the interactions indicated
by the right squares and weaken the left squares, the peptide
conformation will increase in the right dots and decrease in the
left dots, respectively. We can also apply the same discussion
in the second eigenvector by considering the bottom and the
top direction in the biplot. Thus, the perturbation effects by the
first and the second eigenvectors are systematically understood
by the biplot.

By using these biplot properties, we first consider the
perturbation effects of the first eigenvector, whose principal
components discriminate between the α and the PPII + β

states. Smaller negative components of the first eigenvector
(left squares in Fig. 5) are the electrostatic interactions 2N-3H,
1C-3N, 1O-3H, and 2N-2O. Among them, 2N-3H, 1C-3N,
and 1O-3H are attractive interactions and more favorable for
the α state (left dots in Fig. 5). The 2N-2O interaction is
repulsive, and more unfavorable to the PPII + β states (right
dots in Fig. 5). This can be confirmed in the structure because
2N and 2O atoms are separate in the α state. Larger positive
components of the 1st eigenvector (right squares in Fig. 5)
are the electrostatic interactions 2H-2O, 1C-3H, and 1O-3N.
The interaction 2H-2O is attractive and more favorable for
the PPII + β states. The interactions 1C-3H and 1O-3N are
repulsive and more unfavorable to the α state. Their atoms are
separate in the PPII + β states.

Next, we consider the perturbation effects of the second
eigenvector, whose principal components discriminate be-
tween the PPII and the β state. Smaller negative components
of the second eigenvector (bottom squares in Fig. 5) are the
attractive electrostatic interactions 1O-2C and 1C-2O, and
more favorable for the PPII state (bottom-right dots in Fig. 5).
The larger positive component of the second eigenvector (top
squares in Fig. 5) is the repulsive electrostatic interaction
1O-2O. This is more unfavorable to the PPII state, and its atoms
are separate in the β state (top-right dots in Fig. 5). In summary,
by using the PEPCA biplot we can identify the three peptide
states in explicit water by the first and the second principal
components and their important intrapeptide interactions by
the components of the first and the second eigenvectors.

B. IPA of the alanine dipeptide isomerization in explicit water

We apply the IPA to understand the contribution of
the peptide-water interactions to the peptide conformational
distribution. To perform MD simulations with fixed peptide
coordinates q [Fig. 2(c)], we used the belly option of the sander
program of AMBER 10 [31]. Although the original belly-option
code turns off the forces acting on the target molecule derived
from the potential energy, the random forces still act on the
target molecule in the Langevin dynamics. Therefore, we
slightly modified the code to turn off the random forces to
fix the target molecule completely. For initial coordinates,
we used 1000 conformations from the original 10 ns MD
simulation [Fig. 2(a)] with 10 ps intervals. Starting from these
initial conformations, 1000 NVT (300 K) MD simulations with
fixed peptide coordinates q were performed [Fig. 2(c)]. After
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FIG. 5. (Color online) The PEPCA biplot of the alanine dipeptide in explicit water. Dots show the scatter plot of the first and the
second principal components [g1(q),g2(q)]. Left, bottom-right, and top-right structures represent the snapshot at 120 ps (in the α state),
350 ps (in the PPII state), and 370 ps (in the β state), respectively. Squares show the scatter plot of the top ten components of the first
and the second eigenvectors (Uk1,Uk2). The label “1O-3H” indicates the electrostatic interactions between 1O atom and 3H atom shown in
structures.

calculating truncated and shifted intermolecular interactions
(Table III), we performed the IPA [Fig. 2(d)].

Figure 6 shows the IPA eigenvalues with different cutoff
distances and sampling times for the conditional expecta-
tions. We can see the eigenvalues decrease and converge
by increasing the sampling time. Therefore, the IPA surely
gives the definite result with sufficient sampling time for the
conditional expectations. Figure 7 shows the IPA eigenvalues
with different values for rc. The eigenvalues converge for
11 Å � rc � 15 Å except the third eigenvalue. Figure 8
shows the IPA biplots using different values for rc. For
rc = 2 to 4 Å, states can not be identified from the principal
components. For rc = 5 to 6 Å, the first principal components
roughly discriminate the α state and PPII + β states. For rc �
7 Å, the separation of the α and PPII + β states becomes
clearer. However, the separation of the PPII state and the
β state is unclear. Therefore, we cannot discuss important
intermolecular interactions to discriminate the PPII state and
the β state.

We now identify the important intermolecular interactions
to the α state and PPII + β states by using the biplot with rc =
15 Å. Smaller negative components of the first eigenvector [left
squares in Fig. 8 (rc = 15 Å)] are 3H-H, 3N-O, 1C-H, 1O-O,

TABLE III. Number of peptide-water potential energy terms
with permutation invariance. The permutation symmetries consist
of relabeling hydrogens in a methyl group, hydrogens in a water
molecule, and water indexes. The symbols O and H in the left column
indicate interactions with oxygen or hydrogen atoms of water. Van
der Waals interactions about hydrogens in water are not incorporated
in the TIP3P water model [33].

Potential type No.

van der Waals (O) 16
Electrostatic (H) 16
Electrostatic (O) 16

Total 48

2O-H, and 2H-H electrostatic interactions, where -H and -O
indicate interactions with the hydrogen and oxygen atoms of
water, respectively. Because 3H-H, 3N-O, 1C-H, 1O-O, and
2H-H electrostatic interactions are repulsive, they represent
more unfavorable interactions for the PPII + β states than the
α state. The attractive interaction 2O-H prefers the α state to the
PPII + β states. Larger positive components [right squares in
Fig. 8 (rc = 15 Å)] are 3H-O, 1O-H, 3N-H, 2N-H, 1C-O, 2C-
O, and 2O-O electrostatic interactions. Attractive electrostatic
interactions 3H-O, 1O-H, 3N-H, 2N-H, 1C-O, and 2C-O prefer
the PPII + β states to the α state. The repulsive electrostatic
interaction 2O-O is a more unfavorable interaction for the α

state than the PPII + β states.

C. DIPA of the alanine dipeptide isomerization in explicit water

To incorporate the distance information systematically, we
apply DIPA to the alanine dipeptide in explicit water. The
simple method to implement FPCA using −βf(r|q) (DIPA) is
to perform PCA with discretized functional data, as described
in Appendix C. We discretize the interval [0,rc] with NB bins
as

rl ≡ l�r, �r ≡ rc/NB, l = 0, . . . ,NB. (45)

To obtain f(rl|q) [Eq. (33)], we estimate the force Fk(rl) and
the conditional cumulative density NiJk

(rl|q). The force Fk(rl)
can be calculated from the force field used. The conditional
cumulative density NiJk

(rl|q) must be estimated from the MD
simulations that fix the coordinates q of the target molecule
[Fig. 2(c)], which are identical to the MD simulations used to
perform IPA. We can estimate NiJk

(rl|q) by averaging the
number of Jk atoms within rl of the ith atom. The PCA
was implemented by performing a SVD after centering the
discretized data [11]. By using the correspondence between
the PCA and the FPCA that is given in Table VII, we obtain
the eigenfunctions, eigenvalues, and principal components of
DIPA.
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FIG. 6. Dependence of the IPA eigenvalues of alanine dipeptide in explicit water on the cutoff distance rc and the sampling time. IPAs were
performed from 10 ps (10 sample) to 25 ns (25 000 sample) averages for the conditional expectations 〈V| q〉.

We investigate the convergence of DIPA by varying the
conditions for the conditional cumulative densities. First,
we check the dependence of the DIPA eigenvalues on the
sampling time to estimate the conditional cumulative densities
(Fig. 9). Upon increasing the sampling time, the eigenvalues
decrease and converge. In particular, the top three eigenvalues
converge within 1 ns. This convergence rate is faster than
that for the IPA using rc = 15 Å (Fig. 6). Second, we
investigate the dependence of the DIPA eigenvalues on the
cutoff distance rc (Fig. 10). Upon increasing rc, the eigenvalues
increase and converge for rc � 10 Å in DIPA. We attribute

FIG. 7. Dependence of the IPA eigenvalues of alanine dipeptide in
explicit water on the cutoff distance rc. The conditional expectations
were estimated from 25 ns (25 000 sample) averages.

this monotonically increasing property in DIPA to the fact
that a distance-dependent perturbation with a longer cutoff
distance includes shorter distances, so that a larger change
in the conformational distribution can be induced. Since
DIPA converges for rc � 10 Å, the cutoff value rc = 15 Å
is sufficient for further analysis. Finally, we checked the
dependence of the DIPA eigenvalues on the stride �r of
the interval [0,rc] for the conditional cumulative densities
(Fig. 11). The top eigenvalues are robust against variation in
�r . In particular, for �r � 0.2 Å, the eigenvalues are almost
identical. In summary, allowing sufficient sampling time, a
longer cutoff distance rc, and a small stride �r for conditional
cumulative densities, DIPA gives definite results.

We analyze in detail the converged result of DIPA. Because
the top three eigenvalues converge within 1 ns (Fig. 9), we use
the results of DIPA with 1 ns MD simulations in the following
analysis. The first principal components discriminate between
the α and the PPII + β states, and the second principal
components discriminate between the PPII and the β states
(dots in Fig. 12). Thus, the top two eigenfunctions suffice
to identify important peptide-water interactions for the three
states. Next, we consider the dependence on distance, which
cannot be directly interpreted from the IPA biplot. By using
Eqs. (37) and (42), the normality of the ith DIPA eigenfunction
is represented as

M∑
k=1

∫ rc

0
Uki(r)2dr = 1. (46)

By using Eq. (46), we can quantify the contribution of the
distance r to the ith eigenfunction by introducing

Si(r) ≡
M∑

k=1

Uki(r)2 � 0, (47)
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FIG. 8. (Color online) Dependence of the IPA biplot of the alanine dipeptide in explicit water on the cutoff distance rc. The conditional
expectations are estimated from 25 ns MD simulations (25 000 sample). Directions of the eigenvectors and corresponding signs of the principal
components are determined to be consistent with the PEPCA biplot (Fig. 5). The meaning of biplots is same as in Fig. 5. Labels α, PPII, and β

indicate principal components at identical snapshots in Fig. 5. The label “A-H” (“A-O”) indicates electrostatic interactions between dipeptide
atom A (shown on structures of Fig. 5) and hydrogen (oxygen) atoms of water molecules. Components of eigenvectors (squares) are selected
from the union of the top ten components of the first and the second eigenvectors.

which satisfy

∫ rc

0
Si(r) dr = 1. (48)

FIG. 9. Dependence of the DIPA eigenvalues of the alanine
dipeptide in explicit water on the sampling time for conditional
cumulative densities (rc = 15 Å and �r = 0.05 Å). DIPA was
performed every 10 ps from 10 ps to 25 ns MD simulations.

For r � 10 Å, S1(r) and S2(r) are almost zero (Fig. 13).
This indicates that long-range intermolecular interactions
over 10 Å have no preference with respect to the three
states. These results also explain the convergence of the
top two eigenvalues for rc � 10 Å in Fig. 10. Although

FIG. 10. Dependence of the DIPA eigenvalues of the alanine
dipeptide in explicit water on the cutoff distance rc. Conditional
cumulative densities are estimated from 1 ns MD simulations
(�r = 0.05 Å).
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FIG. 11. Dependence of the DIPA eigenvalues of the alanine
dipeptide in explicit water on the stride �r of the interval [0,rc].
Conditional cumulative densities are estimated from 1 ns MD
simulations (rc = 15 Å).

long-range intermolecular interactions cause the slow con-
vergence in IPA (Fig. 6), these smaller contributions of
long-range interactions are considered to be responsible for the
fast convergence in DIPA. The contributions S1(r) and S2(r)
are maximized at r = 5.55 Å and r = 4.55 Å, respectively.
Therefore, hydration shell around these distances has an

FIG. 13. Contribution of the distance r to the first and the second
DIPA eigenfunctions [Eq. (47)] of the alanine dipeptide in explicit
water. Conditional cumulative densities are estimated from 1 ns MD
simulations (rc = 15 Å and �r = 0.05 Å).

important role to determine the preference among the three
states.

Since components of the PEPCA or IPA eigenvectors are
represented as points (squares in Figs. 5 and 8), eigenvector
components are compactly plotted in a biplot. However,
components of DIPA eigenfunctions are represented as curves

FIG. 12. (Color online) DIPA biplots of the alanine dipeptide in explicit water. Conditional cumulative densities are estimates from 1 ns
MD simulations (rc = 15 Å and �r = 0.05 Å). Dots show the scatter plot of the first and the second principal components [g1(q),g2(q)]. Labels
α, PPII, and β indicate principal components at identical snapshots in Fig. 5. The curves are components of the first and the second DIPA
eigenfunctions [Uk1(r),Uk2(r)] (0 Å � r � 15 Å). Label “A-O” (“A-H”) indicates that the curve shows the electrostatic interactions between
A atom of the peptide (Fig. 5) and oxygen (hydrogen) atoms of water molecules. Numbers on the curves represent r in units of Å.
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FIG. 14. Contribution of the kth component to the first and the
second DIPA eigenfunctions [Eq. (49)] of the alanine dipeptide in
explicit water. Conditional cumulative densities are estimated from
1 ns MD simulations (rc = 15 Å and �r = 0.05 Å). Components
are selected from the union of the top nine components of the first
and the second eigenfunctions. The significance of the labels (such
as “1C-O”) is identical to that used in Fig. 12.

because the component of DIPA eigenfunctions depends on
distance. Therefore, representing all components in a biplot is
complicated. To circumvent this, we select some components
that are large contributors to the eigenfunction and plot them
on different biplots. By using Eq. (46), we may quantify the
contribution of the kth component to the ith eigenfunction by
introducing

Ski ≡
∫ rc

0
Uki(r)2dr � 0, (49)

which satisfy

M∑
k=1

Ski = 1. (50)

Figure 14 shows Ski with large values for the first and the
second eigenfunctions.Then, we represent these top compo-
nents by biplots (Fig. 12). First, the attractive interaction
that prefers the α state to the PPII + β states is 2O-H
electrostatic interaction. Second, the attractive interaction that
prefers the PPII state to the β state is 2H-O electrostatic
interaction. Finally, the attractive interactions that prefer the
β state to the PPII state are 1C-O, 1O-H, 2C-O, and 2O-H
electrostatic interactions. By comparing components of the
IPA eigenvectors for rc = 15 Å [Fig. 8 (rc = 15 Å)] with
components of the DIPA eigenfunctions (Fig. 12), we see that
they correspond. For example, 1C-H components point to the
left and 1C-O components point to the right for both IPA and
DIPA. Thus, we can confirm the consistency between the IPA
and the DIPA.

D. PEPCA of the chignolin folding in explicit water

To test the feasibility of the DIPA for larger molecules, we
use the chignolin folding in explicit water. The chignolin is a
ten-residue peptide (Gly1-Tyr2-Asp3-Pro4-Glu5-Thr6-Gly7-
Thr8-Trp9-Gly10) that folds into β hairpin (Protein Data Bank
(PDB) ID 1UAO) [38]. In previous studies [39–41], folding
simulations of the chignolin were successfully performed. The
protocol of the following MD simulation is identical to that
of the alanine dipeptide (Sec. III A). The first structure in
1UAO was used for the initial coordinates of the chignolin.
Water molecules were included in a cubic box whose edge
length was determined to be the minimum distance between
peptide atoms and the faces of the box over 20 Å. As a result,
6437 water molecules were contained within the unit cell. To
neutralize the whole system, 12 Na+ and 10 Cl− ions were
added. Małolepsza et al. [27] pointed out that some improper
torsion potentials of AMBER force field are not invariant to
exchange of symmetrical atoms and these could be avoided
by reordering the atoms for the torsion angle. We applied
their program [42] to the topology file. This reordered atoms
of improper torsions of Tyr2, Asp3, Glu5, and C-terminal
of Gly10. After energy minimization and 100 ps NpT MD
simulation at 1 atm and 312 K (melting temperature) [38], the
box size became (58.4 Å)3. Then, a 1 μs NVT (312 K) Langevin
dynamics simulation with a collision frequency 1.0 ps−1 by
integration with a 2 fs time step was performed. The root
mean square deviation (RMSD) of the chignolin (Fig. 15)
shows native to non-native transitions three times.

After calculating the potential energy terms with permuta-
tion invariance (Table IV) with 1 ns interval (1000 structures),
the PEPCA was performed. The PCA was implemented by
the SVD after centering the potential energy terms. Two large
gapped eigenvalues are observed in Fig. 16. Therefore, we
can expect that the top two principal components identify
conformational states and their corresponding eigenvectors
can identify important intramolecular interactions to each

FIG. 15. RMSD of Cα atoms from the first structure of the
chignolin in explicit water.
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TABLE IV. Number of the chignolin potential energy terms with
permutation invariance. The number of all potential energy terms
ignoring the permutation invariance is given in parentheses.

Potential type No.

Bond 116 (141)
Angle 204 (249)
Dihedral 313 (403)
van der Waals 6147 (9063)
Electrostatic 6147 (9063)

Total 12 927 (18 919)

state. Figure 17 shows the PEPCA principal components. By
comparing Fig. 15, we can see that the first principal com-
ponents correspond to the native and non-native transitions.
The second principal components indicate that the non-native
structures around 0.1 μs are different from the non-native
structures around 0.6 and 0.75 μs.

We analyze the conformational states by using the PEPCA
biplot (Fig. 18). In the left side of the biplot [g1(q) < 0],
dense dots are observed. By comparing Figs. 15 and 17,
these dots correspond to the native structures. A snapshot
from the state also confirms the native β-hairpin structure
(dashed box labeled N in Fig. 18). We refer to the state as
the “N” state (native state). Dots in the right side of the
biplot [g1(q) > 0] corresponds to the non-native state. In the
bottom-right [g1(q) > 0 and g2(q) < 0] of the biplot, we can
see two dense dots. Structures from these states (dashed boxes
labeled M1 and M2 in Fig. 18) share the same backbone
structures. Although the M1 structure has no contact between
N- and C-terminal residues, the M2 structure has contact
between them. By comparing the backbone of the native
β hairpin, these structures can be recognized as misfolded
structures. Therefore, we refer to these states as the “M1”
state and the “M2” state (misfolded state), respectively. In the
top-right [g1(q) > 0 and g2(q) > 0] of the biplot, we can see
scattered dots. A structure from these dots (dashed box labeled
U in Fig. 18) has unfolded backbone structure. We refer to this

FIG. 16. The PEPCA eigenvalues of the chignolin in explicit water.

FIG. 17. The top three PEPCA principal components of the
chignolin in explicit water.

state as the “U” state (unfolded state). Thus, we can identify
the four states, that are the native (N) state [g1(q) < 0], two
misfolded (M1 and M2) states [g1(q) > 0 and g2(q) < 0], and
the unfolded (U) state [g1(q) > 0 and g2(q) > 0] in the PEPCA
biplot.

Next we identify preferable intramolecular interactions to
each state by the PEPCA biplot (Fig. 18). First, we consider
the interactions that prefer the N state to the non-native state.
These interactions are located on the left side of the biplot
(Uk1 < 0). We can see that the bottom-left (Uk1 < 0 and
Uk2 < 0) components are attractive electrostatic interactions
for the N- and the C-terminal residues except 1N-10O
repulsive electrostatic interaction. We can confirm 1H-10O
and 1O-10H contacts in the N structure. The top-left (Uk1 <

0 and Uk2 > 0) components are 3OD-6HG1, 6OG1-8HG1,
3H-8O, and 3OD-8HG1 electrostatic interactions. These are
attractive electrostatic interactions among Asp3, Thr6, and
Thr8 residues. We can also confirm 3OD-6HG1, 6OG1-8HG1,
and 3H-8O atoms contact in the N structure.

Second, we identify important interactions to the M1 and
the M2 states. The N state and the M1 + M2 states are
discriminated by the bottom-right direction. As shown in
Appendix D, we can understand a perturbation effect of the
linear combination of the first and the second eigenvectors
from the biplot. This indicates that the favorable interactions
for the M1 and the M2 states can be found in the bottom-right
direction. In the bottom-right direction, there are repulsive
electrostatic interactions among Asp3, Thr6, and Thr8 residues
that destabilize the native state. Attractive electrostatic inter-
actions in the bottom-right directions are 3H-7O, 1O-9H, and
2C-7O. From the M1 and the M2 structures in Fig. 18, we can
see 3H-7O and 1O-9H atoms contact and these contacts are not
observed in the N structure. The M1 state and the M2 state are
discriminated by the top-right and bottom-left directions. The
attractive electrostatic interaction 1H-10O prefers the M2 state
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FIG. 18. (Color online) The PEPCA biplot of the chignolin in explicit water. Dots show the scatter plot of the first and the second
principal components [g1(q),g2(q)]. Squares show the scatter plot of the components of the first and the second eigenvectors (Uk1,Uk2). Top 20
components of the first and the second eigenvectors are shown. Labels such as 1H-10O indicate the electrostatic interaction between the 1H
atom and the 10O atom in the dashed boxes. Structures represent the snapshot at 0.68 μs (in the N state), 0.73 μs (in the M1 state), 0.75 μs (in
the M2 state), and 0.114 μs (in the U state), respectively. In M1 and M2 structures, the side-chain of Trp9 is not drawn.

to the M1 state. We can confirm that there is 1H-10O contact
in the M2 structure and there is not in the M1 structure.

Finally, we identify favorable interactions for the U state.
Components in the top-right direction are 1O-10O, 2N-10O,
1H-10C, and 1C-10C repulsive electrostatic interactions. Since
the U state does not have stable intramolecular interactions,
these results are reasonable. In summary, we can identify the
four states (N, M1, M2, and U) by the top two principal
components and their important intramolecular interactions
by corresponding eigenvectors.

E. DIPA of the chignolin folding in explicit water

To identify important intermolecular interactions, we apply
the DIPA to the chignolin folding in explicit water. The
protocol to perform the DIPA is identical to that of the
alanine dipeptide (Sec. III C). For initial coordinates, we used
1000 conformations from the original 1 μs MD simulation
[Fig. 2(a)] with 1 ns intervals. Starting from these initial
conformations, 1000 NVT (312 K) MD simulations with
fixed chignolin coordinates q were performed [Fig. 2(c)].
Conditional cumulative densities were calculated using rc =
25 Å and �r = 0.05 Å. The number of the chignolin-solvent
interaction with permutation invariance is M = 798 (Table V)

and the number of bins for the conditional cumulative densities
is NB = rc/�r = 500. The PCA variable number for the
FPCA (Appendix C) is p = MNB = 399 000 and the sample
size is n = 1000. Since the p × n data matrix is large, the
SVD implementation for the PCA is difficult to apply. Instead
of the SVD, we implemented the PCA by diagonalizing an
n × n centered Gram matrix of the data matrix [18,43].

There are three large DIPA eigenvalues and they are almost
converged within 100 ps MD simulations (Fig. 19). Therefore,
we can expect that the top three DIPA eigenfunctions identify
important chignolin-solvent interactions. Interestingly, the
convergence rate is faster than that of the alanine dipeptide
(Fig. 9). We discuss this point in Sec. IV.

TABLE V. Number of chignolin-solvent potential energy terms
with permutation invariance.

Potential type No.

van der Waals (Na+, Cl−, O) 114 × 3
Electrostatic (Na+, Cl−, H, O) 114 × 4

Total 798
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FIG. 19. Dependence of the DIPA eigenvalues of the chignolin
in explicit water on the sampling time for conditional cumulative
densities (rc = 25 Å and �r = 0.05 Å). DIPA was performed every
10 ps from 10 to 500 ps sampling time.

The top two principal components (Fig. 20) exhibit similar
dynamics to that of the PEPCA principal components (Fig. 17).
This indicates that the four states (N, M1, M2, and U)
can be identified by the top two principal components and
their important chignolin-solvent interactions can be identified
by the corresponding eigenfunctions. The third principal
components discriminate between the U state and the other
states. As shown in Fig. 17, the third PEPCA principal
components do not show this discrimination. Since the U state
is exposed to the solvent compared with the other folded three

FIG. 20. Top three DIPA principal components of the chignolin
in explicit water. Conditional cumulative densities are estimated from
100 ps MD simulations (rc = 25 Å and �r = 0.05 Å).

FIG. 21. Contribution of the distance r to DIPA eigenfunctions
[Eq. (47)] of the chignolin in explicit water. Conditional cumulative
densities are estimated from 100 ps MD simulations (rc = 25 Å and
�r = 0.05 Å).

states (N, M1, and M2), the third eigenfunction is expected to
represent the chignolin-solvent interactions that stabilize these
exposed atoms. We confirm this later by using biplots.

The first and the second DIPA eigenfunctions are 0 for
r � 20 Å (Fig. 21). Therefore, the cutoff value rc = 25 Å is
sufficient to converge the DIPA. The eigenfunctions have large
value for 5 Å � r � 8 Å. This suggests that the solvation shell
around these distances have different contribution to each state.

To identify important intermolecular interactions to each
state, we select the large contributors to each eigenfunction
(Fig. 22). Based on Ski , we show biplots using the first and
the second or the third principal components (Fig. 23). First,
the attractive interaction that prefers the N state to the M1 +
M2 states is 7O-H electrostatic interaction. From structures in
Fig. 18, we can see that 7O atom is exposed to the solvent in
the N state and it contacts 3H atom in the M1 + M2 states.
Second, the attractive interaction that prefers the M1 + M2
states to the N states is 8O-H electrostatic interaction. The 8O
atom contacts 3H in the N state and it is exposed to the solvent
in the M1 + M2 states. Third, the attractive interactions that
prefer the M1 state to the M2 state are 10C-O and 10O-H
electrostatic interactions. The 10O atom contacts 1H in the M2
state and it is exposed to the solvent in the M1 state. Finally,
the attractive interaction that prefers the U state to the folded
states (N, M1, and M2) is 3OD-H electrostatic interaction. The
3OD atoms contact the peptide atoms in the N, M1, and M2
states and they are exposed to the solvent in the U state.

In summary, the DIPA identify the four states (N, M1,
M2, and U) by the top three principal components and their
important intermolecular interactions by their corresponding
eigenfunctions. Although we only use the information about
intermolecular interactions, the DIPA can correctly identify the
chignolin conformational states. This can be possible because
some atoms in the chignolin expose to the solvent with state
dependence.
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FIG. 22. Contribution of components to DIPA eigenfunctions
[Eq. (49)] of the chignolin in explicit water. Conditional cumulative
densities are estimated from 100 ps MD simulations (rc = 25 Å and
�r = 0.05 Å). Components are selected from the union of the top
nine components of the first, the second, and the third eigenfunctions.
Label A-O (A-H) represents the electrostatic interactions between
the atom A of the chignolin (dashed boxes in Fig. 18) and oxygen
(hydrogen) atoms of water molecules.

IV. DISCUSSION AND CONCLUSIONS

To identify conformational states of the target molecule
and intermolecular interactions that are important for each
state, we developed perturbation analyses of intermolec-
ular interactions. We show (i) distance-independent and
(ii) distance-dependent perturbation analyses can be realized
by performing (i) a PCA using conditional expectations of
truncated and shifted intermolecular potential energy terms
and (ii) a FPCA using products of intermolecular forces and
conditional cumulative densities. We refer to these analyses as
IPA and DIPA, respectively.

For comparison of the IPA and the DIPA, we applied
them to the alanine dipeptide in explicit water. Although
the first IPA principal components identify the α state and
the PPII + β states for larger cutoff length, the separation
of the PPII state and the β state is unclear in the second
IPA principal components. DIPA eigenvalues converge with a
sufficient sampling time, longer cutoff distance rc, and smaller
stride �r of the interval [0,rc] for the conditional cumulative
densities. With this convergence condition, DIPA identifies
three peptide states from the top two eigenfunctions. The
separation between the PPII and the β state is clearer than that
for IPA. Although long-range peptide-water interactions cause
the slow convergence in IPA, they have small contributions to
the top two eigenfunctions in DIPA. This fact is considered to
be responsible for the fast convergence of DIPA. Thus, DIPA
improves IPA by introducing a dependence on distance.

To show the feasibility of the DIPA for larger molecules,
we applied the DIPA to the ten-residue chignolin folding
in explicit water. Interestingly, the DIPA converges faster
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FIG. 23. (Color online) DIPA biplots of the chignolin in explicit water. Conditional cumulative densities are estimated from 100 ps MD
simulations (rc = 25 Å and �r = 0.05 Å). Dots show the scatter plot of the first and the second or the third DIPA principal components. Labels
N, M1, M2, and U indicate principal components at identical snapshots in Fig. 18. The curves are components of the first and the second or the
third DIPA eigenfunctions. A label “A-O” (“A-H”) indicates that the corresponding curve shows the electrostatic interactions between the A atom
of the chignolin (dashed boxes in Fig. 18) and oxygen (hydrogen) atoms of water molecules. Numbers on the curves represent r in units of Å.
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than that of the alanine dipeptide. The top three DIPA
principal components identify the four states (native state, two
misfolded states, and unfolded state) and the corresponding
eigenfunctions identify important chignolin-water interactions
to each state. Although the DIPA only use information about
intermolecular interactions, it can identify the conformational
states by recognizing atoms in the chignolin that expose to the
solvent with state dependence.

Top two DIPA eigenvalues of the chignolin (Fig. 19) exhibit
faster convergence than that of the alanine dipeptide (Fig. 9).
To explain this behavior, we analyze the relative error of
eigenvalues due to the finite sampling estimation. We assume
that the DIPA is performed according to the procedure shown
in Appendix C. For convenience, we treat fk(rl|q) as a vector
[f1(r1|q), . . . ,fM (rNB

|q)]T in the following part. We denote
the n sample estimator of fk(rl|q) as fk,n(rl|q). When n is
large, the multivariate central limit theorem indicates

fk,n(rl|q) = fk(rl|q) + 1√
n
�k(rl|q), (51)

where �k(rl|q) follows the multivariate normal distribution

�k(rl|q) ∼ N (0, cov(fk,1(rl|q)|q)). (52)

For simplicity, we assume fk(rl|q) and �k′(rl′ |q) are un-
correlated and replace cov(fk,1(rl|q)|q) with its average
〈cov (fk,1(rl|q)|q)〉. Under these assumptions, the covariance
of Eq. (51) becomes

cov(−βfk,n(rl|q)
√

�r)

= cov(−βfk(rl|q)
√

�r) + 1

n
〈cov(−βfk,1(rl|q)

√
�r|q)〉.

(53)

With Table VII, we note that the ith eigenvalue of the second
covariance matrix in Eq. (53) is σ 2

i . We denote the ith
eigenvalue of the first covariance matrix and the average of
the third covariance matrix in Eq. (53) as σ 2

i,n and �σ 2
i ,

respectively. By applying Weyl’s inequality [28] to Eq. (53),
the relative error of the ith eigenvalue is bounded as

1

n

�σ 2
MNB

σ 2
i

�
σ 2

i,n − σ 2
i

σ 2
i

� 1

n

�σ 2
1

σ 2
i

. (54)

The first inequality in Eq. (54) indicates that finite sampling
eigenvalues are overestimated. The second inequality in
Eq. (54) shows the relative error is in inverse proportion to
the sampling time. These properties qualitatively explain the
monotonically decreasing behavior of eigenvalues with respect
to the sampling time in Figs. 9 and 19. The second inequality
in Eq. (54) also indicates that the sampling time required to
achieve some relative error is proportional to �σ 2

1 /σ 2
i . In the

third covariance matrix in Eq. (53), the variation is due to the
number fluctuation of atoms within rl because the intermolec-
ular force is constant at rl . Since the excluded volume of the
chignolin is larger than that of the alanine dipeptide, the num-
ber of atoms within rl is smaller in the chignolin. Therefore, the
smaller number fluctuation can be expected in the chignolin.
This may induce the smaller value of �σ 2

1 relative to the con-
formational fluctuation of the target molecule (σ 2

i ). Thus, one
possibility of the faster convergence of the top two eigenvalues

of the chignolin is due to the larger excluded volume and the
larger conformational fluctuation of the chignolin.

Here we discuss the applicability of DIPA to protein
molecules. To perform DIPA, we need to perform (i) a long-
time MD simulation of the whole system, (ii) MD simulations
that fix the target molecule, and (iii) FPCA using products of
intermolecular forces and conditional cumulative densities.
First, we consider the feasibility of (i) the long-time MD
simulation of the whole system. Of course, to identify the
conformational states by DIPA, the states have to be sampled
by the MD simulation. In many protein molecules, the time
scale of functional motions is submicrosecond to millisecond,
so the corresponding MD simulation is required.

Second, we consider the feasibility of (ii) MD simulations
that fix the target molecule. Before performing the MD simu-
lations, we confirm that the functional states are sampled in the
MD simulation. For this purpose, we can use PEPCA [18] by
identifying molecular states and their important intramolecular
interactions. After confirmation of the molecular states, we
determine the number n of MD simulations to perform (for this
study, we performed n = 1000 MD simulations). If the number
of functional states is small, n = 1000 to 10 000 is sufficient.
We must also determine the sampling time to estimate
conditional cumulative densities. In the chignolin, the top
three eigenvalues converge within 100 ps MD simulations.
Because the number of water molecules around an atom of
the peptide and a protein is not significantly different, we
can expect that a few ns MD simulations also suffice for the
protein. In the current massive computing clusters, it is feasible
to perform 1000 to 10 000 independent MD simulations with
a few ns.

Finally, we discuss the feasibility of (iii) the FPCA using
products of intermolecular forces and conditional cumulative
densities. Since we have assumed n = 1000 to 10 000,
as per the discussion above, we can perform PCA using
diagonalization of an n × n centered Gram matrix as used in
Sec. III E. The centered Gram matrix can be calculated from
the Gram matrix. The (i,j ) component of the Gram matrix can
be calculated from the ith and the j th structures. Therefore,
the Gram matrix calculation can be easily decomposed and
parallelized. In summary, the most time-consuming part for
protein molecules is (i) the long-time MD simulation of the
whole system, which is currently a common problem in the
field of MD simulations. Although micro- to millisecond MD
simulations are difficult, the recent breakthrough involving
the special purpose machine [44] is promising. The other
parts [(ii) and (iii)] are feasible with current computational
power.

We can now analyze the molecular conformational fluctua-
tions based on their intramolecular interactions (PEPCA) and
intermolecular interactions (DIPA). The PEPCA is useful for
understanding the molecular functional states based on their
amino acid residues or bases interactions, whereas the DIPA
is useful for understanding the regulation mechanism of the
states by the environmental molecules. An important aspect
of PEPCA and DIPA is that they can be applied to ordinary
classical mechanical force fields in MD simulation. Further-
more, both results can be systematically visualized by biplots.
Therefore, we believe that PEPCA and DIPA provide general
analysis methods to understand the molecular conformational
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fluctuations based on their intra- and intermolecular interac-
tions.
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APPENDIX A: CHANGES IN THE CONFORMATIONAL
DISTRIBUTION OF THE SYSTEM AND TARGET

MOLECULE DUE TO A PERTURBATION

Changes in the conformational distribution of the system
[D(ρ ′(q,q′)||ρ(q,q′))] and target molecule [D(ρ ′(q)||ρ(q))]
due to a perturbation �V (q,q′) can be connected by the
equality [20,22]

D(ρ ′(q,q′)||ρ(q,q′))
= D(ρ ′(q)||ρ(q)) + 〈D(ρ ′(q′|q)||ρ(q′|q))〉�V , (A1)

which is called the chain rule. The second term on the right-
hand side is called the conditional Kullback-Leibler divergence
(or conditional relative entropy) and is explicitly defined as

〈D(ρ ′(q′|q)||ρ(q′|q))〉�V

≡
∫ ( ∫

ρ ′(q′|q) ln
ρ ′(q′|q)

ρ(q′|q)
dq′

)
ρ ′(q) dq � 0. (A2)

By the non-negative nature of the Kullback-Leibler diver-
gence, Eq. (A2) is also non-negative and Eq. (A1) indicates
the inequality

D(ρ ′(q,q′)||ρ(q,q′)) � D(ρ ′(q)||ρ(q)). (A3)

Therefore, the change in the conformational distribution of
the whole system due to the perturbation is always larger than
the change in the conformational distribution of the target
molecule. By using Eqs. (3) and (5), the perturbed conditional
distribution ρ ′(q′|q) is expressed as

ρ ′(q′|q) = e−β�V (q,q′)

〈e−β�V |q〉ρ(q′|q). (A4)

If we consider an intramolecular perturbation �V (q), Eq. (A4)
can be expressed as ρ ′(q′|q) = ρ(q′|q) and Eq. (A2) becomes
0. Therefore, the chain rule [Eq. (A1)] leads to the equality

D(ρ ′(q,q′)||ρ(q,q′)) = D(ρ ′(q)||ρ(q)). (A5)

Thus, the changes in the conformational distribution of
the system and target molecule due to the intramolecular
perturbation �V (q) are equal.

TABLE VI. Second-order approximations of changes in the
conformational distribution of the system [D(ρ ′(q,q′)||ρ(q,q′))] and
target molecule [D(ρ ′(q)||ρ(q))] due to intra- [�V (q)] and inter-
[�V (q,q′)] molecular perturbations.

Distribution change Perturbation potential energy

by the perturbation �V (q) �V (q,q′)

D (ρ ′(q,q′)||ρ(q,q′)) 1
2 var(β�V ) 1

2 var(β�V )

D (ρ ′(q)||ρ(q)) 1
2 var(β�V ) 1

2 var(β 〈�V | q〉)
〈D (ρ ′(q′|q)||ρ(q′|q))〉�V 0 1

2 〈var(β�V |q)〉

Next we consider the second-order approximation of
each term in the chain rule [Eq. (A1)]. By using Eq. (3),
D(ρ ′(q,q′)||ρ(q,q′)) can be expanded as

D(ρ ′(q,q′)||ρ(q,q′)) = 1
2 var(β�V ) + · · · . (A6)

By using Eqs. (5) and (A4), Eq. (A2) can be expanded as

〈D(ρ ′(q′|q)||ρ(q′|q))〉�V = 1
2 〈var(β�V |q)〉 + · · · . (A7)

Therefore, using Eqs. (A6), (11), and (A7), the second-order
approximation of the chain rule [Eq. (A1)] gives

1
2 var(β�V ) = 1

2 var(β〈�V |q〉) + 1
2 〈var(β�V |q)〉. (A8)

We note that this equality is the law of total variance [Eq. (10)].
The results are summarized in Table VI.

APPENDIX B: RELATIONSHIP OF FUNCTIONS USED
IN THE IPA AND THE DIPA

By using the conditional density niJk
(r|q) and Eq. (14),

〈Vk| q〉 is represented as

〈Vk|q〉 =
∑
i∈Ik

∫ rc

0
[φk(r) − φk(rc)]niJk

(r|q) dr. (B1)

The integration by parts of Eq. (B1) leads to

〈Vk|q〉 =
∫ rc

0
fk(r|q) dr. (B2)

Thus, 〈Vk| q〉 (used in the IPA) is related by integration of
fk(r|q) (used in the DIPA). This is also expressed as

fk(r|q) = d 〈Vk| q〉
drc

∣∣∣∣
rc=r

, (B3)

which means fk(r|q) is a derivative of 〈Vk| q〉.

APPENDIX C: PROCEDURE TO PERFORM FPCA

The simple method to perform FPCA is to apply PCA with
discretized functional data [11,19]. We describe this method
in our setting. By discretization Eq. (45), Eq. (34) can be
approximated as

var(β〈�V |q〉) ≈ var

(
β

M∑
k=1

NB∑
l=1

λk(rl)fk(rl|q)�r

)
. (C1)

The right-hand side of Eq. (C1) can be considered the variance
of the linear combination of the variable −βfk(rl|q)

√
�r

with the coefficient λk(rl)
√

�r for k = 1, . . . ,M and
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l = 1, . . . ,NB . Therefore, we can consider the corresponding
PCA. We denote the ith eigenvector, eigenvalue, and prin-
cipal component of the PCA as Uki(rl)

√
�r , σ 2

i , and gi(q),
respectively. If we use n sample target molecular coordinates
q to perform the PCA, then i = 1, . . . , min(n,MNB). Then
we can show that the PCA estimates FPCA using −βf(r|q)
as follows: First, the eigenvectors Uki(rl)

√
�r of the PCA are

orthonormal:

M∑
k=1

NB∑
l=1

(Uki(rl)
√

�r)(Ukj (rl)
√

�r) = δi,j . (C2)

These equalities converge to the orthonormal conditions of the
eigenfunctions Uki(r) according to

M∑
k=1

∫ rc

0
Uki(r)Ukj (r) dr = δi,j (C3)

for n,NB → ∞. Second, the eigenvalue σ 2
i of the PCA is

expressed as

σ 2
i = var

(
M∑

k=1

NB∑
l=1

(Uki(rl)
√

�r)(−βfk(rl|q)
√

�r)

)
,

(C4)

which converges to the eigenvalue of the FPCA

σ 2
i = var

(
β

∫ rc

0

M∑
k=1

Uki(r)fk(r|q) dr

)
(C5)

for n,NB → ∞. Finally, the principal component gi(q) of the
PCA is expressed as

gi(q) =
M∑

k=1

NB∑
l=1

(Uki(rl)
√

�r)(−β(fk(rl|q)

−〈fk(rl|q)〉)
√

�r), (C6)

which converges to the principal component of the FPCA

gi(q) = −β

M∑
k=1

∫ rc

0
Uki(r)(fk(r|q) − 〈fk(r|q)〉) dr (C7)

for n,NB → ∞. Thus, we can estimate FPCA us-
ing −βfk(r|q)(k = 1, . . . ,M) by performing PCA using
−βfk(rl|q)

√
�r(k = 1, . . . ,M and l = 1, . . . ,NB), which is

summarized in Table VII.

TABLE VII. Estimate of FPCA using −βfk(r|q)(k = 1, . . . ,M)
by performing PCA using −βfk(rl |q)

√
�r(k = 1, . . . ,M and l =

1, . . . ,NB ). The ith eigenfunction Uki(r) is estimated from the ith
eigenvector Uki(rl)

√
�r of PCA dividing by

√
�r . The ith eigenvalue

σ 2
i and principal component gi(q) of FPCA are estimated by the ith

eigenvalue σ 2
i and principal component gi(q) of PCA.

FPCA using PCA using
−βfk(r|q) −βfk(rl |q)

√
�r

k = 1, . . . ,M k = 1, . . . ,M

l = 1, . . . ,NB

ith eigenfunction (vector) Uki(r) Uki(rl)
√

�r

ith eigenvalue σ 2
i σ 2

i

ith principal component gi(q) gi(q)

APPENDIX D: PERTURBATION EFFECTS BY A LINEAR
COMBINATION OF TWO EIGENVECTORS

We consider a unit vector u = (u1, . . . ,uM )T , which is a
linear combination of the two eigenvectors ui and uj :

u ≡ cos θui + sin θuj . (D1)

By using Eqs. (11), (16), and (17), the change in the
conformational distribution of the target molecule induced by
λ = δu becomes

D(ρδu(q)||ρ(q)) = 1
2δ2

(
cos2 θσ 2

i + sin2 θσ 2
j

) + · · · . (D2)

By using Eqs. (9), (13), and (21), the ratio change of the target
molecular conformation q by the perturbation can be expanded
as

ln
ρδu(q)

ρ(q)
= δg(q) + · · · , (D3)

where we define

g(q) ≡ cos θgi(q) + sin θgj (q). (D4)

By introducing n ≡ (cos θ, sin θ ), Eqs. (D1) and (D4) are
represented by the projection to n as

uk = n · (Uki,Ukj ) (D5)

g(q) = n · [gi(q),gj (q)]. (D6)

Thus, uk and g(q) are obtained on the biplot by projection
onto n. In summary, the perturbation effects of the linear
combination of eigenvectors can be understood from the biplot
as well as each eigenvector.
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