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MOTIVATION With the advancement of tissue clearing technology and 3D imaging methods, researchers
are able to rapidly obtain wholemouse brain images at single-cell resolution. Because of themassive size of
the resulting images, however, a high-throughput yet highly accessible image analysis method is needed to
scale up 3D profiling of the brain. In addition, effective data sharing is critical tomaximize the potential value
of the 3D image dataset. Here, we address these challenges by designing an end-to-end image analysis
platform embracing the latest cloud technology, named CUBIC-Cloud.
SUMMARY
Recent advancements in tissue clearing technologies have offered unparalleled opportunities for re-
searchers to explore the whole mouse brain at cellular resolution. With the expansion of this experimental
technique, however, a scalable and easy-to-use computational tool is in demand to effectively analyze
and integrate whole-brain mapping datasets. To that end, here we present CUBIC-Cloud, a cloud-based
framework to quantify, visualize, and integrate mouse brain data. CUBIC-Cloud is a fully automated system
where users can upload their whole-brain data, run analyses, and publish the results. We demonstrate the
generality of CUBIC-Cloud by a variety of applications. First, we investigated the brain-wide distribution of
five cell types. Second, we quantified Ab plaque deposition in Alzheimer’s disease model mouse brains.
Third, we reconstructed a neuronal activity profile under LPS-induced inflammation by c-Fos immunostain-
ing. Last, we show brain-wide connectivity mapping by pseudotyped rabies virus. Together, CUBIC-Cloud
provides an integrative platform to advance scalable and collaborative whole-brain mapping.
INTRODUCTION

Massive and collective observation of complex systems (often

referred to as omics approaches) is the driving force of modern

biology. It would also be true for studying highly evolved

mammalian brains, in which a complex system of intricately con-
This is an open access article under the CC BY-N
nected cells gives rise to intelligent behaviors. In particular,

comprehensive approaches to identifying the properties of every

single cell in situ within this complex system would be pivotal.

Recent advancements in tissue clearing technology have

brought new breakthroughs in this landscape (Dodt et al.,

2007; Hama et al., 2011; Ert€urk et al., 2012; Ke et al., 2013;
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Chung et al., 2013; Yang et al., 2014; Susaki et al., 2014; Tainaka

et al., 2014; Belle et al., 2017). Combinedwith light-sheet fluores-

cence microscopy (LSFM) (Power and Huisken, 2017) and ge-

netic, viral, and immunohistochemical labeling techniques, tis-

sue clearing now enables high-speed volumetric imaging of

mammalian (most prominently mouse) brains at cellular resolu-

tion (Susaki et al., 2014; Renier et al., 2014; Murray et al.,

2015; Hama et al., 2015; Chan et al., 2017; Kubota et al., 2017;

Cai et al., 2019; Kirst et al., 2020). Built on top of these techno-

logical advancements, we recently reported the construction of

CUBIC-Atlas (Murakami et al., 2018), a 3D mouse brain atlas

with single-cell resolution, where all of the cells in the brain

(amounting to approximately 0.1 billion) were digitally analyzed

and recorded.

These scientific advancements encourage us to conceive a

future where whole-brain mapping projects, which convention-

ally required institution-scale resources and efforts, can be car-

ried out by individual laboratories, or even by a single researcher

(Tainaka et al., 2016; Susaki and Ueda, 2016; Mano et al., 2018;

Gradinaru et al., 2018). In this regard, the current technological

stage can be thought of as parallel to the dawn of genome

sequencing technology in the early 2000s. In genome science,

the importance of the data repository cannot be overstated.

The emergence of the database to browse and search genomes

(such as the UCSC Genome Browser) (Karolchik et al., 2009)

played a critical role in integrating data collected in numerous

sites across the globe. Such distributed collaboration prompted

a rapidly growing coverage of various organisms and individuals,

pioneering the data-driven discoveries of gene functions and

new therapeutics. In neuroscience, several large-scale mouse

brain datasets have been constructed, such as the Allen Mouse

Brain Atlas (Wang et al., 2020) and Brain Architecture Project

(Kim et al., 2017), primarily by using serial sectioning tomography

methods. However, a common platform embracing the tissue-

clearing and rapid brain-scanning techniques that offers the op-

portunity for the community to submit and share new data has

yet to appear. On the basis of these considerations, we suggest

that it is now possible to construct a community-supported

mouse brain data repository, borrowing collaborative ideas

from the genome sciences.

By referring to the previous image analysis pipelines for tis-

sue clearing samples (Frasconi et al., 2014; Susaki et al.,

2015; Renier et al., 2016; Cai et al., 2019; F€urth et al., 2018),

we postulated that the following elements should be consid-

ered in composing a framework for whole mouse brain map-

ping. First, a reference brain (equivalent to the template

sequence), to which all brain data are aligned, is necessary.

We think that CUBIC-Atlas would play a central role in address-

ing this challenge. Second, the framework should be con-

structed around the research community, which allows re-

searchers to submit the data, as well as browsing and

searching the brains in the previous studies. Third, because

of the complexity and the large size of the whole-brain data-

sets, the framework should be equipped with a toolkit to visu-

alize and quantify the data to assist intuitive understanding.

Fourth, these software tools should offer superior accessibility

and usability to the end users, without requiring specialized

expertise in programming or powerful computer resources.
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In this paper, we present a computational framework for sin-

gle-cell-resolution whole mouse brain analysis, named CUBIC-

Cloud. We built CUBIC-Cloud on top of the latest cloud

computing technologies. After identifying single cells from a 3D

image stack, users can upload the structure image and detected

cell list to the CUBIC-Cloud server. The CUBIC-Cloud server

automatically aligns individual brains with the CUBIC-Atlas and

constructs the user’s own mouse brain database. CUBIC-Cloud

also offers graphical user interface (GUI) tools to perform various

kinds of quantification tasks. Uploaded brains can be interac-

tively visualized by using the 3D brain viewer. The scientific re-

sults obtained thereby can be easily published in CUBIC-Cloud’s

public repository, to allow other researchers to view the data.

CUBIC-Cloud is hosted at https://cubic-cloud.com.

After describing the software architecture, we extensively

demonstrate the capability and generality of the CUBIC-Cloud

framework by analyzing over 50 whole mouse brains, covering

four important application domains: (1) investigating the distribu-

tion of targeted cell types (‘‘cell type mapping’’), (2) quantifying

the pathological state by disease markers, (3) reconstructing

the neuronal activity profile by imaging the expression of c-Fos

(‘‘activity mapping’’), and (4) deciphering brain-wide connectivity

by using rabies virus (RV) tracers (‘‘circuit mapping’’). With these

applications, we established a general framework to effectively

integrate whole-brain mapping experiments, offering new op-

portunities for data-driven discoveries in neuroscience.

RESULTS

CUBIC-Cloud whole-brain analysis framework
To design a unified workflow for whole mouse brain analysis, we

constructedCUBIC-Cloud on top of our previously published tis-

sue clearing protocols and brain mapping strategies (Susaki

et al., 2014; Murakami et al., 2018; Tainaka et al., 2018). The

workflow of whole-brain analysis using CUBIC-Cloud is illus-

trated in Figure 1. Briefly, the workflow divides into (1) tissue

clearing and image collection, (2) single-cell detection, and (3)

uploading the data to CUBIC-Cloud, where brain registration,

brain-wide quantification, and visualization are performed.

In this study, mouse brains were cleared by CUBIC-L and CU-

BIC-R+ reagents (Tainaka et al., 2018) (step 1 in Figure 1). In

addition, nuclear counterstaining (for brain registration) and,

optionally, immunostaining were applied by following the CU-

BIC-HV protocol (Susaki et al., 2020) (STAR Methods). In most

experiments, cleared brains were imaged using macro-zoom

LSFM with 6.5 mm isotropic XYZ voxel size (step 2 in Figure 1

and STAR Methods). The transparency of the cleared brain

was quantitatively evaluated by imaging fluorescent beads

embedded in the tissue, validating homogeneous image quality

throughout all brain regions (Figure S2 and STAR Methods).

After we obtained the 3D image stack, we detected labeled

cells by using ilastik software (Sommer et al., 2011; Berg et al.,

2019) (step 3 in Figure 1). ilastik uses supervised machine

learning (random forest algorithm) to classify pixels into multiple

classes (such as cells and backgrounds), which performed

robustly well even when cells from different brain regions pre-

sented diverse brightness and morphology. We created a Py-

thon script, which wrapped ilastik to automate the workflow

https://cubic-cloud.com
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Figure 1. CUBIC-Cloud: A cloud-based computational framework for whole mouse brain analysis

Overview of the whole-brain analysis pipeline by CUBIC-Cloud. In this study, mouse brains were cleared by CUBIC-L and CUBIC-R+ reagents and 3D stained by

the CUBIC-HV protocol. Cleared brains were imaged by using macro-zoom LSFM. From the obtained image stacks, single cells were isolated by using ilastik

software, converting the raw raster image into an ensemble of discrete cells (i.e., point cloud). Users then upload the point-cloud cells and structure image to

CUBIC-Cloud. In the cloud, brain registration is automatically performed to align individual brains with the reference brain. Thereby, the user’s own brain database

is constructed. Then, the user can perform various kinds of brain-wide quantification using ‘‘notebook.’’ CUBIC-Cloud also offers an interactive 3D whole-brain

viewer (‘‘studio’’). Last, CUBIC-Cloud lets users share and publish their point-cloud whole-brain data, as well as notebooks and studios, to allow broad access to

researchers. Abbreviation are as follows: AAV/RV, adeno-associated virus/rabies virus; IEGs, immediate-early genes.
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and add some custom analysis routines (STAR Methods). The

accuracy of cell counting is described in the corresponding sec-

tions. By this cell counting procedure, raw raster images were

converted into a discrete ensemble of cellular points, or a point

cloud, where positions, volumes, and fluorescence intensities

of all labeled cells in the brain were recorded. Of note, users

can opt to use their own cell detection routine, as long as the

output follows the format required by CUBIC-Cloud.

After cell detection, the rest of the analyses were carried out

by CUBIC-Cloud (Video S1). Users can go to the CUBIC-Cloud

website (https://cubic-cloud.com) and upload their cellular

point cloud and corresponding structure image (nuclear stain-

ing channel) to the server. CUBIC-Cloud is deployed on

Amazon Web Service (AWS by) using the so-called serverless

architecture. Serverless architecture allows the cloud to

dynamically scale its capacity based on the computational

load, enabling the cloud to handle a practically unlimited num-

ber of tasks in parallel while minimizing the idling time. The

detailed implementation is described in the STAR Methods

(also see Figure S1). Once the brain data are uploaded to the

CUBIC-Cloud server, they are automatically sent to the prepro-
cessing task queue, which is powered by ECS and EC2 on

AWS. The preprocessing task first performs brain registration

to align the submitted brain with the CUBIC-Atlas (step 4 in Fig-

ure 1). CUBIC-Cloud uses the symmetric diffeomorphic image

registration (SyN) algorithm implemented in the ANTs library

(Avants et al., 2008). Using the nuclear staining channel, SyN

iteratively optimizes the warp field to maximize the normalized

cross-correlation, which measures the similarity between two

images (Figure S3I and S3J and STAR Methods). After registra-

tion, cell coordinates are transformed to the CUBIC-Atlas

space, and all cells are given anatomical region IDs (following

the Allen Brain Atlas CCF v.3) (Wang et al., 2020).

By repeating the above procedures, users can construct their

own brain database in CUBIC-Cloud. As the database grows,

users can search brains using tags attached to them, such as

cell labels and project names, along with other metadata. To

perform quantitative analysis of the brains in the database, CU-

BIC-Cloud offers a ‘‘notebook,’’ a feature that allows users to

create various kinds of graphs with a GUI (step 6a in Figure 1).

To give some concrete examples, many of the figure items pre-

sented in this paper were created by CUBIC-Cloud’s notebook.
Cell Reports Methods 1, 100038, June 21, 2021 3
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Figure 2. Whole-brain analysis of PV-, SST-, ChAT-, and TH-expressing cells

Whole-brain distribution of PV-, SST-, ChAT-, TH-, and Iba1-expressing cells was investigated by applying 3D immunostaining and by using the CUBIC-Cloud

analysis framework.

(A–F) Whole-brain views of labeled cells. Each point (i.e., single cell) was assigned a pseudo-color on the basis of its fluorescence intensity. (A) Merge, (B) PV, (C)

SST, (D) ChAT, (E) TH, (F) Iba1.

(G) Relative population heatmap of all brain regions outside the isocortex. The number of each cell typewas normalized by the total number of cells in each region,

derived from CUBIC-Atlas (n = 4 for PV, SST, ChAT, and TH; n = 7 for Iba1).

(H) Density of PV- and SST-expressing cells in the isocortex. Data are shown as the mean ± SD (n = 4).

(legend continued on next page)
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CUBIC-Cloud also offers an interactive 3D brain viewer, a

feature called ‘‘studio’’ (step 6b in Figure 1). Here, brain data

are visualized in point-cloud format, where the whole brain is

rendered as an ensemble of discrete cellular points, each car-

rying biological attributes such as protein expression levels.

Point-cloud format is more efficient for delivering data to the

remote clients than sending raw raster data, while carrying the

essential biological information. The viewer runs on standard

web browsers, and the point clouds are adaptively queried

from the server upon the viewer’s camera movement, enabling

one to interact with millions of cells in real time.

The last essential component of CUBIC-Cloud is sharing and

publishing. Users can share their whole-brain data with specific

users, such as research collaborators, and grant access to the

data. Users can opt to publish their data in the CUBIC-Cloud’s

public repository. Once published, any users can view the brain.

The share and publish capability is also supported for the note-

books and studios. Therefore, users can transparently show their

analysis results to the research community. To demonstrate this

concept, all of the brain data investigated in this study are depos-

ited on the CUBIC-Cloud public repository, as well as the note-

books and studios that performed the analysis. Together, CU-

BIC-Cloud offers a cloud-native and integrative software

solution for whole mouse brain mapping.

To maintain the cloud service, CUBIC-Cloud offers both free

and paid subscription plans. With the free subscription, users

can view the published data and try the analysis of several

brains. By publishing the brain data in the public repository,

users are offered a bonus token, which can be used to analyze

other brains. To analyze more brains than the free plan limit,

users need to sign up for the paid subscription. The subscription

policies are subject to changes in the future and can be checked

at the website (https://cubic-cloud.com/subscription_plans).

Whole-brain analysis of PV-, SST-, ChAT-, and TH-
expressing cells
In the following, we use CUBIC-Cloud in several neuroscience

applications to show the generality of the proposed framework.

As the first application, we attempted to quantify the whole-brain

distribution of distinct cellular subtypes that express the

followingmarkers: parvalbumin (PV), somatostatin (SST), choline

acetyltransferase (ChAT), tyrosine hydroxylase (TH), and ionized

calcium-binding adapter molecule 1 (Iba1). Whole-brain-scale

analyses of PV-, SST-, and ChAT-expressing neurons were pre-

viously reported using a knock-in transgenic mouse line with Cre

recombinase and fluorescent proteins (Kim et al., 2017; Zhang

et al., 2017; Li et al., 2018). However, no such whole-brain-scale

analyses have been done so far using immunostaining and tissue

clearing. Immunostaining offers several orthogonal advantages

over genetic approaches, such as the capability to assess the

absolute expression amount, and thus is of significant value.

Therefore, we used the CUBIC-HV protocol (Susaki et al.,
(I) From the cluster of ChAT-expressing cells, the boundary surface including LD

(J) From the cluster of TH-expressing cells, the boundary surface including LC w

(K) Merge of the two boundary surfaces ( color coding is as follows: yellow, ChA

(L) The volume overlaps of the boundary surfaces. Data are shown as mean ± SD

Atlas.
2020) to label the whole adult brain tissue with PV, SST, ChAT,

TH, and Iba1 antibodies (STAR Methods).

The obtained images contained strong and soma-localized

signals as well as moderately bright fibrous structures. Here,

we attempted to quantify the number of immunoreactive cell

bodies, and thus, the ilastik classifier was trained to isolate cell

soma and reject fiber-like signals. The accuracy of the cell detec-

tion was extensively evaluated (Figures S3C–S3G). Our cell

detection demonstrated 75%–95% precision and 60%–85%

sensitivity for the regions evaluated, which we concluded was

accurate enough to perform quantitative analysis.

Whole-brain views of the investigated cell types are shown in

Figures 2A–2F (rendered by CUBIC-Cloud’s 3D viewer). Here,

cells are pseudo-colored, reflecting the fluorescence intensity

of the immunostaining. In our analysis, the total numbers of de-

tected cells were ð6:1 ± 0:7Þ3105 (PV, n = 4), ð6:7 ± 0:3Þ3105

(SST, n = 4), ð6:5 ± 0:2Þ3104 (ChAT, n = 4), ð6:9 ± 1:2Þ3104

(TH, n = 4), and ð2:72 ± 0:14Þ3106 (Iba1, n = 4) (Tables S1 and

S2). In this paper, mean ± SD is used unless otherwise specified.

The relative ratio of each cell type in all brain regions except iso-

cortex is shown in Figure 2G. Here, the ratio was calculated by

dividing the detected cell count by the total number of cells re-

ported in CUBIC-Atlas (Murakami et al., 2018). We will discuss

the brain-wide distribution of these cell types in more detail in

the STAR Methods.

Within the isocortex, PV neurons were most densely popu-

lated in somatosensory and auditory areas, whereas there

were relatively sparse populations in medial frontal and lateral

association areas (Figure 2H). Compared with PV, SST neurons

weremore homogeneously observed in the isocortex, consistent

with the Cre-based study by Kim et al. (2017). Laminar density

analysis revealed that there were almost no PV cells in layer 1,

and that cell density reached its peak in layer 4 or 5 for both

PV and SST (Figures S5A–S5D), successfully recapitulating the

previous observations (Gonchar et al., 2007; Xu et al., 2010).

There were sparse populations of ChAT neurons, whose ChAT

expression levels were very low (Figures S5E and S5F). These

ChAT neurons were most dense in layer 2/3 or 4, corroborating

the previous observation (Gonchar et al., 2007). For TH neurons,

no significant population above false-positive detection level

was found in the isocortex. Iba1-expressing cells were ubiqui-

tously observed in the isocortex, with similar density across

layers.

In terms of the expression levels per cell, again, PV+ neurons

showed large variance across cortical areas. As shown in Fig-

ures S5I–S5N, some of the regions, like the primary somatosen-

sory area, mouth domain (SSp-m), and primary visual area

(VISp), had a long tail in the distribution of the expression level,

meaning that there was a population of neurons expressing a

high amount of PV. On the other hand, regions like the ILA and

ectorhinal area (ECT) had a very short-tailed profile, meaning

that most of the cells had a weak PV expression. In stark
T was extracted (n = 4).

as extracted (n = 4).

T; magenta, TH; cyan, overlapping region).

(n = 4). Brain region acronyms follow the ontology defined by the Allen Brain
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Table 1. Brain region acronyms used in this paper

Acronym Full name

AAA anterior amygdalar area

ACB nucleus accumbens

ADP anterodorsal preoptic nucleus

AHN anterior hypothalamic nucleus

ARH arcuate hypothalamic nucleus

AVP anteroventral preoptic nucleus

BST bed nuclei of the stria terminalis

CEA central amygdalar nucleus

CLI central linear nucleus raphe

DMH dorsomedial nucleus of the hypothalamus

DMX dorsal motor nucleus of the vagus nerve

DTN dorsal tegmental nucleus

FL flocculus

HATA hippocampo-amygdalar transition area

IA intercalated amygdalar nucleus

IC inferior colliculus

ILA infralimbic area

IO inferior olivary complex

LC locus coeruleus

LDT laterodorsal tegmental nucleus

LH lateral habenula

LRN lateral reticular nucleus

LS lateral septal nucleus

LSr lateral septal nucleus, rostral (rostroventral)

part

LPO lateral preoptic area

MEA medial amygdalar nucleus

MEPO median preoptic nucleus

MH medial habenula

MRN midbrain reticular nucleus

MPN medial preoptic nucleus

MPO medial preoptic area

NLL nucleus of the lateral lemniscus

NOD nodulus (X)

NTB nucleus of the trapezoid body

NTS nucleus of the solitary tract

PAG periaqueductal gray

PB parabrachial nucleus

PH posterior hypothalamic nucleus

PP peripeduncular nucleus

PVH paraventricular hypothalamic nucleus

PVa periventricular hypothalamic nucleus,

anterior part

PVi periventricular hypothalamic nucleus,

intermediate part

PVp periventricular hypothalamic nucleus,

posterior part

PVpo periventricular hypothalamic nucleus,

preoptic part

Table 1. Continued

Acronym Full name

PVT paraventricular nucleus of the thalamus

RAmb midbrain raphe nuclei

RL rostral linear nucleus raphe

RR midbrain reticular nucleus, retrorubral area

RT reticular nucleus of the thalamus

SFO subfornical organ

SNc substantia nigra, compact part

SNr substantia nigra, reticular part

SO supraoptic nucleus

SOC superior olivary complex

SUB subiculum

TRS triangular nucleus of septum

VMH ventromedial hypothalamic nucleus

VTA ventral tegmental area

ZI zona incerta

6 Cell Reports Methods 1, 100038, June 21, 2021
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contrast, the expression distribution of SST+ neurons was quite

homogeneous across cortical areas (Figures S5O–S5T). In the

cortex, the PV expression level is known to be correlated with

plasticity during the learning process (Donato et al., 2013).

Thus, the inhomogeneity of the PV expression might reflect dif-

ferences in the computation logic across different cortical areas.

From our cell-type mapping data, certain cell types were clus-

tered in specific areas in the brain, offering clues to delineate the

region boundaries. For instance, we observed that ChAT neu-

rons were densely populated in and around the LDT (for the list

of region acronyms, see Table 1). From this cluster of ChAT neu-

rons, we defined the polygonal boundary enclosing these cells

by using the alpha-shape algorithm (Figure 2I and STAR

Methods). We performed the same analysis targeting TH neu-

rons in and around the LC (Figure 2J). The polygonal boundaries

defined by ChAT+ and TH+ neuron clusters were neighboring

each other with a small overlap (Figure 2K). We then evaluated

the overlap between polygonal boundaries using the Dice metric

(STARMethods). The result showed about 70%overlap between

ChAT-ChAT and TH-TH pairs (Figure 2L). Furthermore, the over-

lap of the ChAT-TH pair was 2.84% ± 0.9%. These results sup-

port the accuracy of our registration method with an orthogonal

evaluation metric, which is largely independent of information

present in the nuclear staining channel. This result thus offers

the possibility of accurately delineating the brain regions by col-

lecting more cell-type mapping data in CUBIC-Cloud.

Last, to assess whether our analysis pipeline can accurately

quantify the expression amount of the proteins, we evaluated

the expression of Iba1 under an artificially induced inflammation

state, because Iba1 expression is known to be correlated with

microglial activation (Ito et al., 1998). In our experiment, 1 mg/

kg of lipopolysaccharide (LPS), a purified extract of the outer

membrane of Gram-negative bacteria, was administered to

mice via intraperitoneal (i.p.) injection. The brains were sampled

24 h after injection (STAR Methods). In the isocortex, no subre-

gions displayed significant change in the cell density (p>0:1,
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Welch’s t test, Figure S5I), whereas themean expression amount

per cell was increased significantly in all subregions (p< 0:05,

Welch’s t test, Figure S5J). The observation that cortical micro-

glia does not proliferate, but increases its Iba1 expression

upon LPS administration, was reported in Chen et al. (2012),

and our results confirmed that it is globally true in all cortical

areas. Outside the isocortex, most regions showed increases

in Iba1 expression (Figure S5K) and had varying degrees of

change. For instance, Iba1 expression amount barely changed

in the cerebellum. On the other hand, we confirmed that the in-

crease in Iba1 expression was markedly high in the SFO and

IO, which are part of the circumventricular organs having a highly

permeable blood-brain barrier (Furube et al., 2018).

Whole-brain analysis of Ab plaque accumulation in an
AD model mouse brain
We next applied the CUBIC-Cloud analysis framework to quan-

titatively understand the pathological state of the Alzheimer’s

disease (AD) model mouse. To demonstrate this, the whole brain

from an AppNL-G-F/NL-G-F AD model mouse (Saito et al., 2014) (9

to 10 months of age) was cleared and stained with anti-Ab anti-

body (n = 4, STAR Methods). In LSFM images, Ab plaques were

observed as dim blobs often accompanying a bright spot at the

core. On the other hand, no plaque staining pattern was

observed in the control wild-type mouse brain (9 to 10 months

of age, n = 3, data not shown).

We first quantified the density (number of individual plaques

per volume) and the volume ratio (computed as (total plaque vol-

ume in the region)/(region volume)). In both metrics, Ab plaque

amounts were highest in the cerebral cortex and cerebral nuclei,

and relatively lower amounts of plaques were observed in the

brain stem and cerebellum (Figures 3A and 3B). The effective

radius of the plaque (computed as r = f3V=ð4pÞg1=3, where V

is the plaque volume) tended to be larger in the isocortex and

hippocampus and smaller in the cerebellum (Figure 3C). Within

the isocortex, a relatively stronger accumulation of Ab was

observed in visual and auditory areas, whereas plaques were

relatively sparse in the medial frontal areas (Figures 3D and

3E). Layer-wise abundance of Ab plaques showed a concave

profile, with its peak in layer 4 (Figure 3F). The whole-brain

cartoon heatmap showing the Ab volume ratio is shown in Fig-

ure 3G. In the brain stem, the plaque volume ratio was typically

0.5%–1.0%. Some brain-stem regions, however, showed

notably larger or smaller amounts of Ab accumulation. For

example, the SNr and VMH had relatively higher amounts of Ab

compared with neighboring regions (Figures 3H and 3I). The

ARH, right next to the VMH, had almost no Ab plaques. We

also observed that the regions around the ventricles showed

relatively lower amounts of plaques, including TRS, DTN, MH,

LH, and PVT (Figures 3G and 3J–3L).

Whole-brain analysis of c-Fos expression underlying
pharmacological sleep induction by LPS
The next important application domain of CUBIC-Cloud is to

reconstruct the neuronal activity profile by imaging the protein

expression of immediate-early genes (IEGs) such as c-Fos.

Such automated analysis would allow comprehensive identifica-

tion of cellular clusters that underlie an animal’s behavioral
phenotype (Susaki et al., 2014; Renier et al., 2016; Tatsuki

et al., 2016; Salinas et al., 2018). Reciprocally, one could define

an animal’s phenotype in a bottom-up manner based on the ac-

tivity pattern of neuron ensembles. Here, we focused on the ef-

fect of LPS. Phenotypically, LPS induces acute sleep in mice,

and we thought that IEG-based activity reconstruction would

be suitable to track the relatively slow dynamics of wake-sleep

cycles.

Administration of 150 mg/kg LPS to mice via i.p. injection at

zeitgeber time = 14 caused an acute immune response accom-

panied by prolonged sleep duration, as confirmed by Snappy

Sleep Stager (SSS) measurement (Figures S7A–S7C and STAR

Methods). In a replicate experiment, brains were sampled 2–

3 h after LPS injection, and the whole-brain c-Fos expression

profile was analyzed (STAR Methods). The accuracy of the c-

Fos cell detection is shown in Figure S3H. Figure 4A shows the

whole-brain 3D rendering of the detected c-Fos-expressing cells

(also see Table S4). We comprehensively searched for the acti-

vated or repressed brain regions by both region-wise and

voxel-wise statistical analysis (Figure S7D). Our analysis re-

vealed that c-Fos expression in some of the isocortical areas

was reduced (Figures 4B and 4C), which included motor and so-

matosensory areas, presumably reflecting the mouse’s resting

state. We also found that some distinct brain nuclei were acti-

vated by LPS. Among those, the most notable regions included

the BST, PVH, PVT, CEA, PB, NTS, and DMX (Figure 4D).

In our result, the specific part of the BST (the oval region;

ovBST) was strongly activated by LPS (Figure 4D). Indeed, ac-

cording to a recent study, the ovBST is responsible for inflamma-

tion-induced anorexia, and it receives inputs from the CEA and

PB (Wang et al., 2019). Our result was able to successfully iden-

tify elevated c-Fos expression in these spatially separated yet

functionally related neurons.

We also observed heterogeneous c-Fos activation in PVT. In

terms of the number of c-Fos+ cells, the increase in number

wasmore pronounced in the posterior PVT (pPVT) than the ante-

rior PVT (aPVT) (Figures 4E–4G). In terms of the expression level,

pPVT and aPVT showed similar levels of increase (Figures 4H

and 4I). Recently, Gao et al. (Gao et al., 2020) identified two clas-

ses of distinct neurons in PVT. Type I neurons, densely located in

the pPVT, respond to aversive stimuli. On the other hand, type II

neurons, dominantly located in the aPVT, become silent upon

aversive stimuli. It is also reported that the type II neurons are

active during sleep. In the pPVT, our observation aligns with

the insight of Gao, where the activated population was likely

type I neurons. In the aPVT, our result might reflect the mixed

response of the type II neurons, where aversive inflammatory

stimuli and induced sleep were both present. It should also be

noted that type I neurons in the pPVT project to the CEA, ILA,

and ACB. We indeed observed that the ILA and ACB were

weakly activated (Figure S7D).

Whole-brain analysis of input cells projecting to
ARHKiss1+ neurons
As the third application domain of CUBIC-Cloud, we show brain-

wide connectivity analysis by using pseudotyped RV. To demon-

strate this application, we focused on a population of neurons

that secrete kisspeptin (a neuropeptide encoded by the Kiss1
Cell Reports Methods 1, 100038, June 21, 2021 7
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Figure 3. Whole-brain analysis of Ab plaque accumulation in an AD model mouse brain

Using the AppNL-G-F/NL-G-F AD model mouse brain (9 to 10 months of age), brain-wide accumulation of Ab plaques was quantified by applying whole-mount

3D immunostaining and by using the CUBIC-Cloud analysis framework.

(A) Density of Ab plaques (number of plaques/mm3) in major brain divisions (n = 4). Data are shown as the mean ± SD (n = 4).

(B) Volume ratio of Ab plaques in major brain divisions (n = 4), computed as ðtotal plaque volume in the regionÞ=ðregion volumeÞ. Data are shown as themean ±

SD (n = 4).

(C) Distribution of effective radius of Ab plaques in the isocortex, hippocampus (HPF), striatum (STR), midbrain (MB), and cerebellum (CB) (n = 4).

(D and E) The volume ratio of Ab plaques in the isocortex (n = 4). In (E), data are shown as the mean ± SD.

(F) Layer-wise average of (D). Data are shown as the mean ± SD (n = 4).

(G) Cartoon heatmaps showing the Ab plaque volume ratio in each brain region (n = 4).

(H–L) Raw 6E10 immunostaining images around SNr (H), VMH (I), TRS and MEPO (J), LDT and DTN (K), and MH, LH, and PVT (L).
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Figure 4. Whole-brain analysis of c-Fos expression level changes by LPS administration

LPS acutely induces sleep in mice. Brain-wide neural activity change induced by LPS was quantified by applying whole-mount 3D immunostaining of c-Fos and

by using the CUBIC-Cloud analysis framework.

(A) Whole-brain views of all c-Fos+ cells, showing saline- (top) and LPS- (bottom) administered brains. Each point (i.e., single cell) was assigned a pseudo-color

based on its fluorescence intensity.

(legend continued on next page)
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gene) located in the ARH, hereafter termed as ARHKiss1+. Those

neurons were shown to play an important role in reproduction

behavior in mammals by regulating pulsatile release of gonado-

trophin-releasing hormone at around 0.3 to 1.0 pulses per hour

(Herbison, 2018). Intriguingly, the pulse frequency changes

through the estrus cycle in females, but not in males. As such,

we comprehensively investigated the neural inputs to ARHKiss1+

neurons to search the mechanism of pulse generation/modula-

tion on the basis of neural circuitry.

To achieve cell-type-specific targeting of virus infection, we

used the Cre/loxP system and RV transsynaptic tracing com-

bined with Cre-dependent AAV vectors (Miyamichi et al., 2013)

(Figure 5A and STAR Methods). After virus injection, brains

(both male and female) were cleared by CUBIC reagents and

analyzed by CUBIC-Cloud pipeline (STAR Methods). We first

checked the distribution of starter cells (GFP+ and mCherry+)

to ensure that the injection was successful and the starter cells

were well confined within the ARH (Figure 5B). In the present

study, the criterion for selecting successful samples was defined

as more than 45% of starter cells localized in the ARH or PVp.

(Note that the area annotated as PVp in the Allen Brain Atlas be-

longs to a part of the ARH in the Paxinos atlas; Paxinos and

Franklin, 2012.) With this criterion, of 20 injections, n = 3 and

n = 4 brains were assessed as successful for male and female,

respectively (Figure 5B).

Figure 5C shows the whole-brain overview of all input (GFP+

and mCherry�) cells. The accuracy of the GFP+ cell detection

is shown in Figure S3B. Our quantitative analysis identified

ð3:1 ± 0:5Þ3104 input cells in the male brain (n = 3), the majority

of which (>85%) were located within the hypothalamus (Fig-

ure 5D and Table S5). As is shown in Figure 5E, ARHKiss1+ neu-

rons receive inputs from dozens of discrete structures

throughout the forebrain and brain stem, including the striatum

(LS), pallidum (BST), thalamus (PVT), hypothalamus (MPO,

MPN, AHN, PVH, DMH, VMH, and PH), hippocampal formation

(HATA and SUB), midbrain (MRN and PAG), and pons (PB).

Remarkably, extremely sparse populations, only a few dozens

of cells per region, were reproducibly identified (Figures 5F and

5G). In terms of cell density, those populations were often equiv-

alent to less than 10 cells/mm3, which could be easily overlooked

with slice-based approaches. These sparse populations were

not reported in the past literature (Yeo et al., 2019).

Wenext performed statistical analysis comparing the number of

input cells between male and female brains (STAR Methods).
(B) Magnified 3D views of (A), where the left isocortex is selectively displayed. O

(C) A p value heatmap showing the isocortex regions whose c-Fos+ cell density

comparing the c-Fos+ cell count. The color lookup table is log scaled (base 10), w

LPS, and blue represents the repressed regions. Regions with no statistical sign

(D) Distinct brain regions activated by LPS (n = 4 each). The top row shows the vox

rows are the raw c-Fos images of saline- and LPS-administered groups, respecti

Data are shown and mean ± SD (n = 4).

(E) Plot of c-Fos+ cells in PVT. Cells are pseudo-colored with their intensity value

(F) The number of c-Fos+ cells in the PVT in 10 divisions along the anterior-poste

(G) The number of c-Fos+ cells in the anterior and posterior half of the PVT. The bo

along the AP axis. Data are shown and mean ± SD (n = 4).

(H) The c-Fos expression levels per cell in the PVT, 10 divisions along the AP ax

(I) The c-Fos expression levels per cell in the anterior and posterior halves of the P

Brain region acronyms follow the ontology defined by the Allen Brain Atlas.
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Overall, binary connectivity differences (i.e., zero in one sex and

some finite number in the other sex) were not observed (Fig-

ure S8A). Weak differences were suggested in LS, MPO, MPN,

and AVP (Figures S8B–S8H andSTARMethods), which are neigh-

bors to one another. The difference was most pronounced in the

LSr, which is known to inhibit the lordosis behavior during mating

interactions (Tsukahara et al., 2014). The sexually dimorphic cir-

cuit from LSr to PAG is reported, where female brains contain

more neurons in the LSr that project to the PAG (Tsukahara and

Yamanouchi, 2002). Our results suggest that LSr sends sexually

dimorphic projections to ARHKiss1+. The identities of these popu-

lations can be fully characterized in future studies.

DISCUSSION

In this study, we presented an integrated computational frame-

work for single-cell-resolution whole-brain analysis, named CU-

BIC-Cloud. Inspired by the scientific data platforms developed in

genomics, we postulated that the framework should provide (1) a

reference brain atlas and automatic mapping to the reference, (2)

open opportunities for the research community to contribute

new data, (3) a toolkit to visualize and quantify data, and (4)

easy and universal accessibility. As we have shown in this study,

CUBIC-Cloud addressed these requirements by designing a

new software stack embracing the latest cloud technologies,

widely available for researchers in neuroscience (Figure 1). Users

can access CUBIC-Cloud at https://cubic-cloud.com.

After describing the software infrastructures offered by CU-

BIC-Cloud, we extensively evaluated and validated the accu-

racy and reproducibility of the proposed framework by various

applications. First, we quantified the exact number of various

cell types, including PV-, SST-, ChAT-, TH-, and Iba1-express-

ing cells (Figure 2). We were surprised by the small variation be-

tween individual animals in terms of labeled cell numbers

(quantified SD usually less than 10%), which not only high-

lighted the accuracy of our analysis but also implied the intri-

cate regulation of cell proliferation in the brain. We further

showed that CUBIC-Cloud can also be used to quantitatively

understand the pathological state of the AD model mouse (Fig-

ure 3). Together, these demonstrations encourage the future

application of CUBIC-Cloud to construct datasets of disease

models and drug effects, where decreases or increases in

particular markers in specific brain regions might correlate

with disease progression.
rientation arrows stand for R (right), D (dorsal), and P (posterior).

was significantly affected by LPS (n = 4 each). The p value was computed by

here red represents the regions that were activated (i.e., more c-Fos+ cells) by

ificance (p > 0.05) were assigned a gray color.

el-wise p valuemap. Color lookup table follows that of (C). The second and third

vely. The fourth row shows the number of c-Fos+ cells of the identified regions.

s. Pink (blue) dots are from LPS (saline)-administered brains, respectively.

rior (AP) axis. Data are shown and mean ± SD (n = 4).

undary between anterior and posterior regions was set at the center of the PVT

is. Data are shown and mean ± SD (n = 4).

VT. Data are shown and mean ± SD (n = 4). *p<0:05, **p<0:01, Welch’s t test.

https://cubic-cloud.com
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Figure 5. Whole-brain analysis of input cell populations projecting to ARHKiss1+ neurons

(A) Virus injection scheme. AAV carrying mCherry, TVA receptor, and optimized glycoprotein (oG) was injected into the ARH of Kiss1-Cre transgenic mouse,

followed by injection of modified rabies virus carrying GFP. Cells expressing both mCherry and GFP are the starter cells.

(B) Quantification of starter cell localization. The ratio was computed by dividing the cell count in each region by the total number of starter cells. The total number

of starter cells in each sample is shown on the right end of the heatmap.

(C) Whole-brain view of all input cells.

(D) Total cell count and the distribution of input cells. Only male brains were considered here.

(E) Cell-density heatmap of all brain regions (excluding the isocortex and cerebellum, where virtually no input cells were detected). The means of male and female

brains are shown.

(F) The plot shows extremely sparse input cell populations in previously unidentified brain regions (n = 3). Only male brains were considered here. Data are shown

and mean ± SD (n = 3).

(G) Raw GFP (black) and nuclear staining (RedDot2, purple) images showing the regions identified in (F). Macro views (top) and zoomed-in views (of boxed areas;

bottom) are shown. Brain region acronyms follow the ontology defined by the Allen Brain Atlas.

Article
ll

OPEN ACCESS
We have also explored the application of CUBIC-Cloud to

reconstruct a whole-brain neuronal activity profile by using c-

Fos immunostaining. Our whole-brain analysis showed that
administration of LPS, which induces sleepiness, repressed

the c-Fos expression in some of the cortical areas, whereas it

activated several distinct brain regions (Figure 4). For example,
Cell Reports Methods 1, 100038, June 21, 2021 11
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our analysis revealed that a distinct subpopulation in the ovBST

strongly responded to LPS, and that the response in PVT neu-

rons is heterogeneous. CUBIC-Cloud facilitates sharing such

knowledge through a widely accessible data repository, and

users will know exactly, with %100 mm spatial resolution in 3D

space, where the relevant region is. By iterating such experi-

ments, CUBIC-Cloud opens up the possibility of functionally dis-

secting the mouse brain with much finer detail and specificity.

Furthermore, CUBIC-Cloud was used to comprehensively

identify brain-wide neuronal connections. As a proof-of-concept

demonstration, input of neuronal populations projecting to

ARHKiss1+ neurons was investigated by using RV tracers (Fig-

ure 5). Our analysis was successful in identifying extremely

sparse populations (less than 10 cells/mm3) with high reproduc-

ibility. Our results also implied sexually dimorphic projection

from LSr to ARHKiss1+. Again, we emphasize that CUBIC-Cloud

can serve as a central hub for researchers to share such

anatomical knowledge.

The above analysis results are all openly accessible at CUBIC-

Cloud. The raw image data, along with the markers highlighting

the detected cells, are available through the CATMAID image

browser (Saalfeld et al., 2009), hosted at http://cubic-atlas.

riken.jp.

Open data sharing and reanalysis have been highly successful

in neuroscience over the past decade. For instance,

NeuroMorpho.org (Ascoli et al., 2007) is a community-driven

storage for single-neuron reconstructions, which now hosts

over 100,000 curated cells. NeuroData.io (Vogelstein et al.,

2018) is another initiative for sharing neuroscientific data, primar-

ily focused on sharing the large raw image files through the

cloud. CUBIC-Cloud serves a distinct role among these re-

sources, by focusing its mission on the whole mouse brain data-

set, represented as a cellular point cloud. We believe that all

these cloud services are complementary to each other. Namely,

researchers can submit the curated point-cloud data in CUBIC-

Cloud, and the raw image data can be deposited in NeuroDa-

ta.io. A smooth and coherent integration of these services via

public API would be beneficial in future developments.

CUBIC-Cloud has pioneered the cloud-based framework to

share and publish whole mouse-brain datasets. We believe,

however, that several technical and administrative advance-

ments need to be made to render it a fully functional and user-

friendly scientific data platform for neuroscience. First, the cur-

rent implementation of CUBIC-Cloud asks the user to perform

cell detection locally. The cell (object) detection routine, along

with the machine learning training, should be integrated into

the cloud in future developments. Indeed, there are already

several reports on embracing cloud computing to analyze

massive light and electron microscopy images (Haberl et al.,

2018; Falk et al., 2019; Bannon et al., 2019; Wu et al., 2019).

An interesting bonus of running object detection in the cloud is

that the training datasets can also be shared, which will allow

the training of more general and accurate deep learning models

(Bannon et al., 2019). Furthermore, CUBIC-Cloud is currently

aimed at analyzing single-cell-resolution image data, where sig-

nals of interest are given as dots localized in cell nuclei/soma. In-

clusion of an object detection routine in the cloud would expand

the scope to include fiber and synaptic structures. Technically,
12 Cell Reports Methods 1, 100038, June 21, 2021
such high-resolution image data can be readily obtained by

state-of-the-art LSFM, and resolution can be boosted by expan-

sion microscopy (Chen et al., 2015; Ku et al., 2016; Tomer et al.,

2014; Murakami et al., 2018). Future software infrastructure de-

velopments, including ones discussed here, will pave the way for

new science toward bottom-up and data-driven elucidation of

neuronal functions and circuitry.

Limitations of the study
CUBIC-Cloud has been rigorously tested and validated with the

CUBIC clearing method by registering over 50 brains. CUBIC-

Cloud shouldbe compatiblewith clearingmethodswith similar tis-

sue deformation characteristics (e.g., hydrophilic clearing

methods, which often soften and expand the tissue). However,

we found that the registration accuracy was compromised, espe-

cially in the olfactory bulb, when iDISCO, a hydrophobic clearing

method, was used (Figure S4 and STAR Methods). The current

registration algorithm cannot correctly overcome the large defor-

mation present in the olfactory bulb, and calls for future work.

Using CUBIC-Cloud, we were able to quantify the number of

cells labeled by immunostaining and the protein abundance

levels. As quantified in Figure S2, however, the fluorescence in-

tensity from deeper brain regions such as the thalamus was

attenuated by a factor of around 2, due to the absorption and re-

sidual scattering of the tissue. A certain calibration process

would be ideally required to correct the intensity attenuation in

the deep brain regions. Using tissue-embedded beads could

be a possible solution, but the bead aggregation might compli-

cate the automatic calibration. As an alternative solution, we

think that a nuclear staining channel could be used to calibrate

the intensity. Assuming that all cells have a single copy of DNA

in the nucleus, the brightness of the nuclear staining of single

cells would be almost the same. Furthermore, the absolute den-

sity of the cells of all brain areas is available from CUBIC-Atlas.

Given this, one might compute the correction factor by dividing

the raw image intensity of nuclear staining by the cell density.

Although we have not implemented this analysis in our pipeline,

ideas along this line would be useful in future studies.

The proposed whole-brain analysis and sharing pipeline was

specifically designed for mouse brain studies. However, given

that tissue-clearing-based high-throughput imaging is appli-

cable to exploring the brains of rarely explored organisms

(Pende et al., 2020), it would be important to extend the frame-

work in the future to accommodate the brains of other organ-

isms, such as rats or primates. As thewhole-brain data of diverse

organisms are collected, we expect that a data integration plat-

form like CUBIC-Cloud would further increase its value.
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Antibodies

Mouse anti-PV antibody Dilution 1:50 Swant Cat# PV235

Rat anti-SST antibody Dilution 1:10 Millipore Cat# MAB354,

RRID AB_2255365

Rabbit anti-ChAT antibody Dilution 1:200 Abcam Cat# ab178850,

RRID AB_2721842

Mouse anti-Th antibody Dilution 1:20 Santa Cruz Biotechnology Cat# sc-25269,

RRID AB_628422

Rabbit anti-Iba1 antibody red

fluorochrome(635)-conjugated Dilution 1:50

Wako Cat# 013-26471,

RRID AB_2687911

Mouse anti-6E10 antibody Dilution 1:75 BioLegend Cat# 93049,

RRID AB_2715854

Rabbit anti-c-Fos antibody Dilution 1:100 Cell Signaling Technology Cat# 2250S,

RRID AB_2247211

Goat anti-Mouse IgG1, Fcg fragment

specific, Cy3, Dilution 1:150

Jackson ImmunoResearch Cat# 115-167-185 RRID AB_2632514

Goat anti-Rat IgG, Fcg fragment specific,

Alexa Fluor 594, Dilution 1:150

Jackson ImmunoResearch Cat# 112-587-008, RRID AB_2632490

Goat anti-Rabbit IgG, Fcg fragment

specific, Alexa Fluor 594, Dilution 1:150

Jackson ImmunoResearch Cat# 111-587-008

RRID AB_2632469

Goat anti-Mouse IgG2a, Fcg fragment

specific, Alexa Fluor 594, Dilution 1:150

Jackson ImmunoResearch Cat# 115-587-186,

RRID AB_2632540

Bacterial and virus strains

AAV9-CAG-FLEx-TCb Miyamichi et al., 2013 (Custom made by

Penn Vector Core)

N/A

AAV9-CAG-FLEx-oG Kim et al., 2016 (Custom made by Penn

Vector Core)

N/A

Rabies DG-GFP+EnvA Osakada and Callaway, 2013 (Amplified in

the lab from a virus shared by Dr. Masahiro

Yamaguchi)

N/A

Deposited data

Whole-brain expression analysis of PV

(analyzed data)

This study https://cubic-cloud.com

Whole-brain expression analysis of PV (raw

image)

This study http://cubic-atlas.riken.jp/

Whole-brain expression analysis of SST

(analyzed data)

This study https://cubic-cloud.com

Whole-brain expression analysis of SST

(raw image)

This study http://cubic-atlas.riken.jp/

Whole-brain expression analysis of ChAT

(analyzed data)

This study https://cubic-cloud.com

Whole-brain expression analysis of ChAT

(raw image)

This study http://cubic-atlas.riken.jp/

Whole-brain expression analysis of TH

(analyzed data)

This study https://cubic-cloud.com

Whole-brain expression analysis of TH (raw

image)

This study http://cubic-atlas.riken.jp/

(Continued on next page)
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Whole-brain expression analysis of Iba1

(analyzed data)

This study https://cubic-cloud.com

Whole-brain expression analysis of Iba1

(raw image)

This study http://cubic-atlas.riken.jp/

Whole-brain antibody staining Ab plaque

(6E10) (analyzed data)

This study https://cubic-cloud.com

Whole-brain antibody staining Ab plaque

(6E10) (raw image)

This study http://cubic-atlas.riken.jp/

Whole-brain expression analysis of c-Fos

(LPS and control condition) (analyzed data)

This study https://cubic-cloud.com

Whole-brain expression analysis of c-Fos

(LPS and control condition) (raw image)

This study http://cubic-atlas.riken.jp/

Whole-brain circuit analysis of ARHKiss1

using Rabies virus (analyzed data)

This study https://cubic-cloud.com

Whole-brain circuit analysis of ARHKiss1

using Rabies virus (raw image)

This study http://cubic-atlas.riken.jp/

Experimental models: organisms/strains

Mouse strain AppNL-G-F/NL-G-F RIKEN BioResource Research Center RBRC No. RBRC06344,

RRID IMSR_RBRC06344

Mouse strain Kiss1tm1.1(cre/EGFP)Stei/J Jackson Laboratory Stock No. 017701,

RRID IMSR_JAX:017701

Software and algorithms

Fiji NIH RRID SCR_02285

Python Anaconda distribution Anaconda https://www.anaconda.com

RRID SCR_018317

ITK-SNAP Yushkevich et al., 2006 RRID SCR_002010

ANTS Avants et al., 2008 RRID SCR_004757

Ecc This study https://github.com/DSPsleeporg/ecc

CUBIC-Cloud This study https://cubic-cloud.com
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Hiroki R.

Ueda (uedah-tky@umin.ac.jp).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Raw 3D image data analyzed in this study are available at http://cubic-atlas.riken.jp through an interactive image viewer powered by

CATMAID (Saalfeld et al., 2009). The analyzed whole-brain data in point cloud format is deposited on http://cubic-atlas.riken.jp, as

well as CUBIC-Cloud’s public repository. The additional data that support the findings of this study are available from the corre-

sponding author upon reasonable request.

Cell detection program used in this study is available at GitHub code repository (https://github.com/DSPsleeporg/ecc). CUBIC-

Cloud computing service is accessible at https://cubic-cloud.com.

CUBIC-Cloud offers both free and paid subscription plans. CUBIC-Cloud is free for use for viewing data. Free plan users can also

try analysis of several brains using the tokens supplied at the initial sign-up. Requests to upload brains or create notebooks over the

free use limit are handled for a fee, to cover and compensate the maintenance cost of the cloud server.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All experimental procedures and housing conditions were approved by the Animal Care and Use Committee of The University of To-

kyo. AppNL-G-F/NL-G-F mice were provided by RIKEN BioResource Research Center (RBRC No. RBRC06344) (Saito et al., 2014).

Kiss1-Cre mouse was purchased from The Jackson Laboratory (Kiss1-tm1.1(cre/EGFP)Stei/J, stock no. 017701). In all experiments,

male mice were used unless otherwise specified. 8- to 14-weeks-old animals were used for experiments (for details see the STAR

Method section of each experiment).

To sample brains, animals were anesthetized by an overdose of pentobarbital (> 100 mg/kg), then transcardially perfused with

10 mL of PBS (pH 7.4) and 20 mL of 4% paraformaldehyde (PFA). The brains were dissected, post-fixed in 4% PFA overnight at

4�C and stored in PBS.

METHOD DETAILS

Tissue clearing and whole-brain 3D immunostaining
To clear brain tissues, we used second-generation CUBIC protocols (Tainaka et al., 2018; Matsumoto et al., 2019). For delipidation,

we used CUBIC-L (10 wt% N-butyldiethanolamine, 10 wt% Triton X-100), and for RI matching, either CUBIC-R+(N) (45 wt% Antipy-

rine, 30 wt% Nicotinamide, 0.5 vol% N-butyldiethanolamine) or CUBIC-R+(M) (45 wt% Antipyrine, 30 wt% N-methylnicotinamide,

0.5 vol% N-butyldiethanolamine) was used. CUBIC-R+(M) was used for samples labelled by fluorescent proteins (FPs) because

of its better FP signal retention, and CUBIC-R+(N) was used otherwise. For all brains, nuclear staining (using either SYTOX-G,

BOBO-1 or RedDo2) was applied. For whole-mount 3D immunostaining, we followed CUBIC-HV protocol (Susaki et al., 2020)).

The details on antibody staining for each experiment can be found in the corresponding sections in STAR Method. Before imaging,

the sample was embedded in a transparent agarose gel so that it could be rigidly mounted on a microscope stage (Murakami et al.,

2018; Matsumoto et al., 2019).

LSFM imaging
A custom-built macro-zoom LSFM (namedGEMINI system) was used to image cleared brains (the details of thismicroscope can also

be found in (Susaki et al., 2020)). For illumination, themicroscope was equipped with 488, 532, 594 and 642 nm diode or DPSS lasers

(SOLE-6, Omicron). The laser sheet was generated by a cylindrical lens and the sheet thickness was adjustable by a mechanical slit.

For detection, the microscope was equipped with 0.63X macro-zoom objective lens (MVPLAPO 0.63X, Olympus) and 0.63-6.3X var-

iable zoom optics (MVX-ZB10, Olympus). After passing a suitable fluorescence filter, the fluorescence signal was captured by

sCMOS camera (Zyla 5.5, Andor).

To achieve homogeneous light-sheet thickness throughout the field of view, several rectangular image strips with shifted illumina-

tion focus were obtained and digitally stitched together, similar to the approach used in TLS-SPIM (Gao, 2015; Fu et al., 2016). The

width of the rectangular strip was matched with the Rayleigh range of the illumination light-sheet. In our setup, the sheet thickness

was approximately 10 mm and the rectangular strip width was 1500 mm, which required 6 image strips to cover the entire brain.

For RV samples, the image voxel size was (X,Y,Z) = (8.25, 8.25, 9.0) mmwith 1.2X intermediate zoom optics. For other experiments,

the voxel size was (X,Y,Z) = (6.45, 6.45, 7.0) mm with 1.6X intermediate zoom optics. It should be noted that the effective resolution

should take into account the moderate tissue expansion (�1.5X) caused by CUBIC-R treatment.

For each dye/FP, the following laser and fluorescence filter pair was used: Alexa 594 [Ex: 594 nm, Em: 641/75 nm bandpass (FF02-

641/75-32, Semrock)], Cy3 [Ex: 532 nm, Em: 585/40 nm bandpass (FF01-585/40-32, Semrock)], SYTOX-G, BOBO-1 and GFP [Ex:

488 nm, Em: 520/40 nm bandpass (FF01-520/44-32, Semrock)], RedDot2 [Ex: 642nm, Em: 708/75 nm bandpass (FF01-708/75-32,

Semrock)], mCherry [Ex: 594 nm, Em: 628/32 nm bandpass (FF01-628/32-32, Semrock)].

Imaging the fluorescent bead embedded in cleared tissue
1.0 mm-diameter green-yellow fluorescent beads (Thermo Fisher, #F8765) were diluted in PBS so that the final bead concentration

was 0:93107 particles/ml. This bead-mixed PBS solution was perfused inmice, prior to the PFA perfusion. Because the bead surface

was modified with amine, PFA was able to cross-link and fix the beads within the tissue. After tissue clearing, the whole brain was

imaged using the macro-zoom LSFM with XYZ voxel resolution of 6.45x6.45x7.0 mm (Figure S2A). Then, single and well-isolated

bead particles were manually annotated (n>15 for each brain region) using ITK-SNAP software (Yushkevich et al., 2006). Subse-

quently, the mean spot profiles were computed and fitted with Gaussian using custom Python code. The fitted sigma values from

six regions were all within 4.4 to 4.9 mm (lateral) and 5.3 to 6.7 mm (axial) (Figure S2B), validating homogeneous image quality

throughout the entire brain. Given the digital sampling frequency (6.5 mm) of themicroscope used, this result was nearly the ideal PSF.

Using the same data, we have also quantified the absolute bread fluorescent intensity of different brain areas (Figure S2C). The

graph indicates that the thalamus, which is most distant from the brain surface, showed relatively lower brightness, reflecting the

attenuation of the illumination beam as well as the emitted fluorescence by the tissue. Nonetheless, the differences in magnitude

between regions were less than two-fold, which we concluded is good enough for quantitative analysis.
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Cell detection
The cell detection workflow used in this study is shown in Figure 1A (’’step 3’’). As the first step, a machine-learning algorithm was

used to classify voxels into labelled cells and other structures. For this step, we used ilastik (Sommer et al., 2011). To train the clas-

sifier, for each label type (such as c-Fos), manual annotation images were prepared. In this study, three classes were defined, which

were (1) signals of interest, i.e., cells labelled by FPs or antibodies (2) bright but false signals, such as non-specific binding of anti-

bodies to vascular structures or neurites extending from cell bodies and (3) background (i.e. void space). Typically, 5,000 to 10,000

voxels were annotated as class 1 per one dataset. To increase the robustness, at least two brains with identical labelling conditions

were annotated. Image annotation was performed using ITK-SNAP software (Yushkevich et al., 2006).

Next, following the ilastik workflow, image feature descriptors were selected to distinguish the three classes defined above. For PV,

Sst, ChAT, Th, Iba1, c-Fos, RV-GFP and AAV-mCherry images, the selected descriptors were Gaussian ( = 0.3, 0.7 voxel), Gaussian

gradient magnitude ( = 0.7 voxel), difference of Gaussian ( = 0.7, 1.0, 1.6, 3.5 voxel) and Hessian of Gaussian eigenvalues ( = 1.0, 1.6,

3.5 voxel). For A images, difference of Gaussian ( = 5.0 voxel) and Hessian of Gaussian eigenvalues ( = 5.0 voxel) were additionally

included, so that the larger spatial context was taken into account. Then, ilastik software trained the voxel classifier using random

forest algorithm. Hyperparameters related to random forest algorithm was automatically configured by ilastik. After the classifier

was trained, it was applied to the test dataset to evaluate accuracy. If obvious error was present, manual annotation data were further

supplemented, so that the classifier became more robust against such errors. Once the classifier achieves satisfactory accuracy, it

could reliably be applied to other images with the same label type.

By applying the voxel classifier trained above to each brain image, a probability imagewas produced, where the value of each voxel

represents the probability of that voxel being class 1 (Figure S3A). The probability value was given in the range [0, 1]. Using this prob-

ability image, a custom Python program isolated individual cells in the following way. First, the probability threshold, Pth = 0:7, was

applied to make a binarized image. Then, connected voxels were searched and merged together, to find individual objects. If the

identified object volume was larger than a threshold, Vth, it was sent to the object separation routine. The object separation routine

simply finds local maxima with an exclusion distance rexcl = V
1=3
th . Vth was heuristically determined to be Vth = 43 = 64 for PV, Sst, c-

Fos, Iba1, Rabeis-GFP and AAV-mCherry, and Vth = 53 = 125 for ChAT and Th. For A plaque segmentation, Vth =Nwas used. Hence,

there are two free parameters (Pth and Vth), both of which can be intuitively determined.

Using 20 CPU cores, cell detection of one 3D image stack (typically 2560x2160x1200 voxels) took about 1 h to complete.

The Python source code and its documentation is available at https://github.com/DSPsleeporg/ecc.

Accuracy evaluation of cell detection
Accuracy of the above explained cell detection procedure was extensively evaluated by comparing automated counting results with

manual cell counting (Figure S3B-H). Manual cell counting was performed by cropping a small cubic image volume (50 or 75 or 100

voxels, depending on the cell density) from brain images which were not used in machine learning training. Well-trained human an-

notators (n = 2) independently marked all of the cells present in the image and typically yielded 100-200 marked cells. Image anno-

tation was performed using ITK-SNAP software (Yushkevich et al., 2006). Cells annotated by both human and algorithm were re-

garded as true positives. Cells annotated by human but not by algorithm was regarded as false negative. Cells annotated by

algorithm but not by human were regarded as false positives. Then, true positive rate (TPR, also called sensitivity) and positive pre-

dictive value (PPV, also called precision) were evaluated for each human annotator. To quantify the overall performance, F1 score,

defined as F1 = 2 � ðPPV 3 TPRÞ=ðPPV +TPRÞ, was also evaluated. For most of the label types and brain regions, our cell detection

algorithm robustly demonstrated good F1 scores, with average score being 0.80 (PV), 0.83 (Sst), 0.88 (ChAT), 0.80 (Th), 0.88 (Iba1),

0.83 (c-Fos) and 0.89 (GFP).

Raw 3D image data, along with markers highlighting all detected cells, are available at http://cubic-atlas.riken.jp through an inter-

active image viewer powered by CATMAID (Saalfeld et al., 2009).

CUBIC-Atlas
CUBIC-Cloud uses CUBIC-Atlas version 1.1 (Murakami et al., 2018) as the reference brain coordinate, to which all individual brain

data were mapped. From the originally published atlas (version 1.0), we added a few minor updates in this study to generate CU-

BIC-Atlas version 1.1. The updates included (1) slight discontinuity between dorsal and ventral image volume (so-called ’’theta tile

displacement’’ in Murakami et al. paper) were corrected and (2) region annotation was updated to be compatible with the Allen Brain

Atlas CCFv3 (October 2017). CUBIC-Atlas v1.1 can be downloaded from http://cubic-atlas.riken.jp.

Brain registration
CUBIC-Cloud uses the symmetric image normalization (SyN) algorithm implemented in ANTs library (Avants et al., 2008) to run regis-

tration between CUBIC-Atlas (’’fixed’’ brain) and individual brain sample (’’moving’’ brain). First, nuclear staining image of the ’’mov-

ing’’ image was downscaled to a voxel size of 50x50x50 mm. Nuclear staining image of CUBIC-Atlas was downscaled to a voxel size

of 80x80x80 mm. Considering the sample’s physical expansion by clearing treatment (2.2X for CUBIC-Atlas and 1.5X for CUBIC-R+

treated brains), this downscaling operation resulted in an effective voxel size of about 35x35x35 mm in both images. The registration

first computed affine transformation to coarsely align the orientation and size, using mutual information as the optimizer metric.

Subsequently, non-linear warping was computed by SyN algorithm, which optimized the warp field by maximizing the normalized
Cell Reports Methods 1, 100038, June 21, 2021 e4

https://github.com/DSPsleeporg/ecc
http://cubic-atlas.riken.jp
http://cubic-atlas.riken.jp


Article
ll

OPEN ACCESS
cross-correlation (NCC) between the two images under diffeomorphic regularization (Avants et al., 2008). Given image IðxÞ and image

JðxÞ, the NCC value between I and J at the voxel position x is given by

NCCðI; J; xÞ = CI; JD

jIjjJj (Equation 1)

where CA;BD represents the inner product taken over a local window with radius R centered at position x. jAj is the L2 norm of the

vector computed over a local window with radius R. Here, IðxÞ= IðxÞ � mIðxÞ means the subtraction of the local mean, where local

mean mIðxÞ is computed over a local window with radius R centered at position x. R= 4 (voxels) was used throughout our brain

registration.

Other detailed parameters used in the ANTs registration are the following. In the first affine transformation stage, the pseudo ANTs

command below was used.

—transform Affine[0.1] \

—metric MI[X,Y,1,128,Regular,0.5] \

—convergence [1000x1000x1000,1e-5,15] \

—shrink-factors 8x4x2 \

—smoothing-sigmas 3x2x1vox

In the second SyN transformation stage, the pseudo ANTs command below was used.

—transform SyN[0.1,3.0,0.0] \

—metric CC[X,Y,1,4] \

—convergence [500x500x500x50,1e-6,10] \

—shrink-factors 8x4x2x1 \

—smoothing-sigmas 3x2x1x0vox

In addition, -winsorize-image-intensities [0.05,1.0] and -use-histogram-matching 0 was used throughout.

The representative registration result is visualized in Figure S3I, alongwith the NCC value heatmap (Figure S3L). To show the repro-

ducibility of the registration, 20 individual brains were mapped onto CUBIC-Atlas with identical registration parameters. The mean

NCC value of each coronal planeswere computed and plotted (Figure S3H). 20 independent curves overlapwith each other, meaning

that the optimization attempt by the registration reached saturation. NCC value tends to show higher value in the olfactory area and

cerebellum, due to the presence of more distinct structural features.

CUBIC-Cloud users can check and validate the registration accuracy of their own brain by looking at the NCC value map and the

summarized plot, which can be downloaded from the ’’Downloads’’ list of the brain detail window.

Registration between CUBIC- and iDISCO-cleared brains
C57BL/6N mouse brain (male, 8-weeks-old, n = 2) were cleared by iDISCO method following the standard protocol (Renier et al.,

2014, 2016). The cell nuclei staining was performed by incubating the sample with 2 uM TO-PRO-3 (ThemoFisher #T3605) dissolved

in PTwH solution for 5 days at 37�C. The cleared brain was scanned with LSFM with (X,Y,Z) = (6.5, 6.5, 7.0) mm resolution.

Prior to running registration, the nuclear staining image was downscaled to (X,Y,Z) = (30, 30, 30) mm voxel resolution. Using ANTs,

registration with CUBIC-Atlas was performed using the same parameters as described above. The representative registration result

is shown in Figure S4A. A series of coronal slice images are shown in Figure S4C, along with the corresponding normalized cross-

correlation (NCC) values represented as a heatmap (Figure S4D). The mean of NCC in each coronal slice was plotted in Figure S4B.

As is shown in this plot, the iDISCO-brain registration resulted in similar NCC values as CUBIC-brain registration in most of the brain

areas, indicating that the registrationmethodwas able to align the iDISCO-cleared brain with the comparable accuracy. However, the

registration accuracy was poor in the olfactory bulb (Figures S4A–S4C). Indeed, the morphology of olfactory bulb is affected in the

CUBIC clearing process, where the organ is expanded and a gap between left and right bulb is widened. Althoughwe have attempted

to tune the registration parameters to overcome this misalignment, no parameters we tested was able to give accurate alignment in

the olfactory bulb. SyN transformation method implemented in ANTs penalizes the deformation where neighboring deformation vec-

tors are not aligned. This strongly penalizes the deformation where the gap between olfactory bulb is widened or shrunk, because the

deformation vector flips the orientation at the center. We presume that this is the reason why the registration in the olfactory bulb was

not successful, and further research would be needed to overcome this challenge.

Architecture of CUBIC-Cloud
CUBIC-Cloud’s entire application stack is deployed on the cloud computing infrastructures offered by Amazon Web Service (AWS).

The cloud is constructed using the serverless architecture (Adzic and Chatley, 2017). Serverless architecture have zero real instances

that are always running; instead, the cloud is composed by connecting microservices, which are dynamically invoked by events.

Such cloud design eliminates the cost of idling servers, while allowing to flexibly and instantly scale out the computing power

when the traffic or load to the service increases.
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The schematic illustration of the cloud architecture is shown in Figure S1. When user accesses the web site, the trafic is first

handled by CloudFront. CloudFront is responsible for caching static contents, managing SSL/TLS and web application firewall

(WAF). Then, static web contents are fetched from S3 bucket and returned to the user. User authentication is handled by Cognito.

Once authenticated, users can access the protected API endpoints securely using json web token (JWT). All REST API requests are

routed by API Gateway and handled by Lambda. Lambda handlers have access to various back-end resources, including the data-

bases and the data buckets. The metadata of the users, brains, notebooks, and studios are stored in DynamoDB. Large data files

(such as images and csv tables) are stored in S3.

Once a user uploads the brain data, the upload completion event from S3 triggers a ’’preprocessing’’ task in the Elastic Container

Service (ECS) cluster. Preprocessing includes brain registration, transformation, and data conversion. ECS automatically launches a

new Elastic Compute Cloud (EC2) instance, pulls the Docker container from Elastic Container Registry (ECR), and initiate a new task.

The task execution is orchestrated by StepFunctions. Notebook tasks (i.e. generating plots) are similarly orchestrated by StepFunc-

tions, except that the runtime is either Lambda or Fargate, depending on the required memory size of the task.

Most of the API handlers are written in Python. The cloud resources are managed by AWS CDK library for Python, and the cloud is

deployed using the CloudFormation generated by the CDK library. The user interfaces (UIs) were constructed using HTML/CSS/

JavaScript and Vue.js framework.

A web-based whole-brain viewer
CUBIC-Cloud offers a point-cloud based interactive 3D brain viewer, a feature called studio. The viewer is written in JavaScript, and

runs in most of the standard web browsers, including Google Chrome and Firefox. It uses WebGL for hardware accelerated 3D

rendering. The core of the point cloud rendering engine was adopted from the open-source project, Potree (2016). Following Potree,

CloudEye uses a specialized point cloud format where the whole point cloud was divided and stored in amulti-resolution hierarchical

structure (octree structure). This hierarchical data structure enabled the adaptive data querying in response to client’s viewpoint, in

which a portion of the points near the viewer’s camera was selectively loaded. The octree-formatted point cloud data were automat-

ically generated as a part of the preprocessing task in the CUBIC-Cloud server. Each point can be attached with several attributes,

including the region ID and fluorescent intensity. Points may be colored using these attributes. For example, points may be given

gradient colors based on their fluorescence intensity values.

Users can navigate and explore the whole-brain data by intuitive mouse interactions. Points can be selectively hidden/displayed

based on the region ID. Arbitrary combinations of brains may be overlaid with user-defined colors. Users can also make a slice view,

which can be moved or rotated with simple mouse dragging. Users can also grab a point (cell) and query its information, such as

fluorescent intensity.

Privacy and data ownership policy of CUBIC-Cloud
CUBIC-Cloud has rigorously defined the privacy and data ownership policy, which can be viewed at the CUBIC-Cloud’s web site

(https://cubic-cloud.com/terms and https://cubic-cloud.com/privacy). In essence, all data stored in the user’s private space solely

belongs to the user and all intellectual properties are protected. When a user decides to publish in the public repository, the depositor

shall grant unrestricted use of the data to all other users in CUBIC-Cloud.

Whole-brain analysis of PV and SST expressing neurons
C57BL/6N wild-type mice brains (8-week-old, n = 4) were cleared, stained, imaged, and analyzed as described in the corre-

sponding sections in STAR Method. Brains were stained with PV antibody (Swant, #PV235; 1/50 dilution; anti-mouse IgG1 sec-

ondary Fab fragment conjugated with Cy3 (Jackson ImmunoResearch, #115-167-185)), SST antibody (Millipore, #MAB354; 1/10

dilution; anti-rat IgG secondary Fab fragment conjugated with Alexa 594 (Jackson ImmunoResearch, #112-587-008)) and nu-

clear staining dye (BOBO-1, Thermo Fisher #B3582). The whole-brain summary of detected PV+ and SST+ cells are provided

in Table S1.

We discussed the PV+ and SST+ cell in the isocortex in the main text. Within the striatum, PV+ cells were almost entirely absent in

the LS and anterior, central, intercalated and medial amygdalar nucleus (AAA, CEA, IA andMEA), as observed previously (McDonald

and Betette, 2001). Distribution in the brain stem faithfully reproduced the previous slice-based immunohistochemical studies (Celio,

1990; Johansson et al., 1984) (Figure 2L). In general, the thalamus contained low numbers of PV+ or SST+ cells, except that dense

PV+ cells were present in the RT and PP. In the hypothalamus, although PV+ cells were sparse, many nuclei contained medium to

high density of SST+ neurons. Within the midbrain, PV+ cells were particularly abundant in the IC and SNr, while SST+ cells were

most frequently observed in the RAmb. Within the pons and medulla, the NTB, SOC and NLL contained both PV+ and SST+ cells

with relatively high density, while sparsely scattered populations were observed in other areas. In the cerebellum, there were a large

number of PV+ neurons in Purkinje layers. Distinct SST+ cell clusters were found in the NOD and FL.

Whole-brain analysis of ChAT expressing neurons
C57BL/6N wild-type mice brains (8-week-old, n = 4) were cleared, stained, imaged and analyzed as described in the corresponding

sections in STAR Method. Brains were stained with ChAT antibody (abcam, #ab178850; 1/200 dilution; anti-rabbit IgG secondary
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Fab fragment conjugated with Alexa 594 (Jackson ImmunoResearch, #111-587-008)) and nuclear staining (SYTOX-G, Thermo

Fisher, #S7020). The whole-brain summary of detected ChAT+ cells are provided in Table S1.

About half of ChAT+ cells were concentrated in striatum and pallidum (34.5% and 13.8%, respectively). Continuously spreading

from these regions, some ChAT+ cells were present in the hypothalamus, including lateral, medial and anteroventral preoptic areas

(LPO, MPO, AVP) and SO. ChAT+ neurons were hardly observed in the olfactory area, hippocampus, cortical subplate and thalamus.

These observations were in good agreement with the slice-based immunohistochemical study by Armstrong et al., 1983.

Whole-brain analysis of Th expressing neurons
C57BL/6N wild-type mice brains (8-week-old, n = 4) were cleared, stained, imaged and analyzed as described in the corresponding

sections in STAR Method. Brains were stained with Th antibody (Santa Cruz Biotechnology, #sc-25269; 1/20 dilution; anti-mouse

IgG2a secondary Fab fragment conjugated with Alexa 594 (Jackson ImmunoResearch, #115-587-186)) and nuclear staining (SY-

TOX-G). The whole-brain summary of detected Th+ cells are provided in Table S1.

The majority of the detected Th neurons were localized in well-known dopaminergic cell groups (A8 to A16) and noradrenergic

cell groups (A1 to A7) (Dahlström and Fuxe, 1964). Dopaminergic cell groups include the RR, SNc, rostral and central linear

nucleus raphe (RL and CLI) and VTA, which form the A8, A9 and A10 in midbrain. Within the hypothalamus, Th neurons

were clustered in the periventricular hypothalamic nucleus, anterior, posterior, intermediate and propotic parts (PVa, PVp,

PVi, PVpo), ARH, ZI and ADP, which form A11-A15 cell groups. Th neurons were numerous in the olfactory area (A16), selec-

tively localized in the glomerular layer. Noradrenergic cell groups formed distinct bands crossing several nuclei in the medulla

and pons, which included the LRN, NTS and DMX, which form A1 and A2. In the pons, a particularly high density was observed

in and around LC, which forms A6. No significant population of Th+ cells were observed in the isocortex, hippocampus, cortical

subplate, striatum and pallidum.

Brain nuclei segmentation using alpha shape algorithm
A densely aggregated ChAT expressing cells were found in the LDT and its neighboring regions. To segment this brain region auto-

matically, a rectangular region containing these cells were manually cropped. Then, to remove the isolated cells that was not part of

the continuous body of the nuclei, the following filter was applied: for each cell in the ensemble, the number of neighboring cells within

the radius 100 mmwere counted, and if the count is less than 2, the cell was removed from the ensemble. After this filtering, the polyg-

onal surface enclosing the points was constructed using alpha shape algorithm with alpha radius parameter 300 mm, implemented in

MATLAB. This method was applied to n= 4 brains aligned with CUBIC-Atlas, obtaining four independent boundary surfaces. Using

the same method, cluster of TH expressing cells around LC were segmented (n = 4).

Lastly, the overlap between ChAT-defined boundaries were evaluated by computing the Dice’s coefficient,

c= ð2 � VV1XV2
Þ=ðV1 +V2Þ where VV1XV2

is the volume of the overlap between the two polygons whose volumes are V1 and V2,

respectively. The Dice’s coefficient of all possible pairs,

�
4
2

�
= 6, were evaluated. The same analysis was applied to TH-defined

boundaries. Lastly, the overlaps between ChAT and TH boundaries were evaluated by picking all possible pairs, 42 = 16.

Whole-brain analysis of Iba1 expressing cells
C57BL/6N wild-type mice (8-week-old, n= 7 for LPS-administered and control group, respectively) were administered with either

1 mg/kg of LPS or saline via i.p. injection. 24 h after injection, brains were sampled. Subsequently, brains were cleared, stained,

imaged and analyzed as described in the corresponding sections in STAR Method. Brains were stained with Iba1 antibody

(Wako, #013-26471; 1/50 dilution; directly conjugated with red dye) and nuclear staining (SYTOX-G). The whole-brain summary of

detected Iba1+ cells are provided in Table S2.

Whole-brain analysis of Ab plaques
AppNL-G-F/NL-G-Fmice (9- to 10-month-old, n = 4) were cleared, stained, imaged and analyzed as described in the corresponding

sections in STAR Method. Brains were stained with -Amyloid (6E10) antibody (Biolegend, #93049; 1/100 dilution; anti-mouse IgG1

secondary Fab fragment conjugated with Alexa 594 (Jackson ImmunoResearch, #115-587-185)) and nuclear staining (SYTOX-G).

Whole-brain analysis of c-Fos profile change induced by LPS
Tomonitor the sleep duration ofmice in an non-invasivemanner, we used a respiration-based sleep stagingmethod, SSS (Sunagawa

et al., 2016). C57BL/6Nwild-typemice (8-week-old, n= 4 each for LPS-administered and control group) were housed in a SSS cham-

ber for 3 days (basal measurement; LD cycle) prior to the injection. On the fouth day at ZT = 14, mice were administered 150 mg/kg

LPS from Escherichia coli (Sigma-Aldrich, #L2990) via i.p. injection, while control mice were administered saline (Figure S7D). After

injection, mice were housed in the SSS chamber for another 24 h to monitor sleep.

Brains for whole-brain imaging were collected in a replicate experiment with the identical conditions as above, except that mice

were housed in DD cycle and that brains were sampled at CT = 16-17 after i.p. injection (n= 4 in total for each group, obtained in 1

batch). Collected samples were cleared, stained, imaged and analyzed as described in corresponding sections in STAR Method.
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Brains were stained by c-Fos antibody (CST, #2250S; 1/75 dilution; anti-rabbit IgG secondary Fab fragment conjugated with Alexa

594 (Jackson ImmunoResearch, #111-587-008)) and nuclear staining dye (SYTOX-G).

Rabies virus injection
The following AAV vectors were generated de novo by PENN vector core using the corresponding plasmids. AAV serotype 9 CAG-

FLEx-TCb (1:531013 gp/ml) was made using the plasmid described previously (Miyamichi et al., 2013). Here TCb stands for TVA-

mCherry expression cassette optimized to increase mCherry brightness. To generate AAV serotype 9 CAG-FLEx-oG (4:53 1013

gp/ml), engineered and optimized glycoprotein (oG) (Kim et al., 2016) sequence was ligated to pAAV-FLEX sequence from pAAV-

FLEX-GFP (Addgene).

Preparation of rabies virus was conducted by using the RVG-GFP, B7GG and BHK-EnvA cells as previously described (Osakada

and Callaway, 2013). The EnvA-pseudotyped RVG-GFP+EnvA titer was estimated to be 1:03109 infectious particles/ml based on

serial dilutions of the virus stock followed by infection of the HEK293-TVA800 cell line (a gift from Dr. Edward Callaway at Salk

Institute).

For trans-synaptic tracing using rabies virus, about 20 nL of mixture of AAV9 CAG-FLEx-TCb and CAG-FLEx-oG (diluted to 1:53

1012 gp/ml each) was injected into the ARH of Kiss1-Cre mice. The first AAV transduced a TVA receptor (fused with mCherry) for

EnvA. The second AAV transduced RV glycoprotein (oG) playing a predominant role in the trans-synaptic transport of RV. The injec-

tion coordinate was P1.1, L0.2, V5.9 (distance in mm from the Bregma for the posterior [P], and lateral left [L] positions and from the

brain surface for the ventral [V] position). Three weeks later, 30 nL of Rabies G-GFP+EnvA was injected into the same brain region to

initiate trans-synaptic tracing. Because there is no cognate receptor for EnvA in the mouse brain, RVG+EnvA only infects TVA-ex-

pressing cells. oG expression from the second AAV complements the RVG, allowing retrograde monosynaptic tracing from Cre-ex-

pressing cells. Seven days later, brains were sampled for CUBIC treatment.

Whole-brain analysis of RV-injected brains
After AAV and RV injection, Kiss1-Cre mice (13- or 14-week-old at the time of brain sampling) were cleared, stained, imaged and

analyzed as described in the corresponding sections in STAR method. Brains were stained with nuclear staining (RedDot2, Biotium,

#40061).

As a negative control experiment, AAV and RV injection was performed using BALB/c wild-type mice brain (n = 3). After clearing,

the whole-brain image was obtained by LSFM. No GFP or mCherry signals were observed by manual inspection, confirming the

absence of Cre-indepentent leakage of AAV vectors and specificity of the virus delivery.

Starter cells were searched by identifying dual positive (mCherry+ and GFP+) cells. For each channel, cell counting was indepen-

dently performed, and the center of the mass of the detected cell was obtained. For each mCherry+ cells, if a GFP+ cell was present

within a distance of 24 mm, the cell was counted as starter. Note that because the cleared tissue was expanded by a factor of � 1.5,

this was roughly 16 mm in untreated tissue. Occasionally, slight voxel shift (typically no more than 4 voxels) occurred between GFP

and mCherry channels, which was presumably caused by slight misalignment between the 488 nm and 594 nm illumination laser or

re-focusing of themicroscope. To correct this, small 3D volumeswith distinct features (typically (X,Y,Z) = (50,50,20) voxel volume, n=

4 or n = 3) frommCherry and GFP channels were cropped, and the voxel shift was computed by registering two images using ANTs,

where transformation was restricted to only translation. Then, the cell coordinates were corrected by themean of the computed shift.

To carry out statistical analysis of input cell numbers between male and female brains, we used the normalized cell count, nnorm;i,

where i represents the ID of the brain region. If we let the raw cell number of each brain region be nraw;i, nnorm;i is simply expressed as

nnorm;i = nraw;i=

�P
i

nraw;i

�
.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
Statistical analysis used in each data are described in detail in the corresponding sections in the main text, supplementary materials

or the figure legends. n (the number of samples) and p-values are indicated in the corresponding sections in the main text, supple-

mentary materials or the figure legends.
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Figure S1. Architecture of CUBIC-Cloud
Schematic diagram showing the architecture of CUBIC-Cloud (see STAR Method), Related to Figure 11
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Figure S2. Imaging 1.0 µm-diameter Fluorescent Beads Embedded in Cleared Tissue, Related to Figure 1
1.0 µm-diameter fluorescent beads embedded in cleared tissue were imaged using macro-zoom LSFM (1X magnification, 6.5 µm voxel size) from1

the ventral side (see STAR Method).2

(A) Representative sagittal slice (virtually reconstructed from horizontal-major 3D image stack) showing the fluorescent beads embedded in tissue.3

(B) Bead spot profiles measured in six brain regions. Lateral and axial profiles were fitted with Gaussian, respectively, and the fitted curves are4

shown along with the raw data points (see STAR Method). The fitted sigma values (with 95% confidence interval) of the Gaussian are also shown.5

The number of particles used to average are shown in the graph.6

(C) Mean bead fluorescence intensity measured in six brain regions. Error bar represents the standard deviation.7

Brain region acronyms follow the ontology defined by Allen Brain Atlas.8
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Figure S3. Validation of Cell Counting and Registration Methods, Related to Figure 1
(A) The cell detection workflow overview (see STAR Method).1

(B-H) Accuracy evaluation of the cell counting algorithm. True positive rate (TPR), positive predictive value (PPV) and F1 score were evaluated for2

seven label types in more than five brain regions. Ground truth was prepared by two independent annotators (see STAR Method).3

(I) Normalized cross-correlation (NCC) value between two brains after registration. Mean NCC value of each coronal slice are plotted. 20 brains4

from different mice were independently registered onto CUBIC-Atlas. Individual profiles (thin lines with light colors) as well as the mean (thick green5

line) are shown.6

(J) Representative brain registration result. CUBIC-Atlas (cyan) and registered brain (magenta) are overlaid.7

(K) Voxel-wise NCC value map computed for the images shown in (J).8

Brain region acronyms follow the ontology defined by Allen Brain Atlas.9
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Figure S4. Registration of iDISCO-cleared brain and CUBIC-cleared brain, Related to Figure 1
(A) Representative images of after registration between iDISCO- and CUBIC-cleared brains. The brains were stained with nuclear staining dyes.1

(B) Normalized cross-correlation (NCC) value between two brains after registration. Mean NCC values of each coronal slice are plotted. Shown in2

green colors are the results of iDISCO-cleared brains (n = 2). Shown in pink is the value of CUBIC-cleared brains (mean of n = 7 brains).3

(C) Representative brain registration result. iDISCO (magenta) and CUBIC(cyan) are overlaid. Pointed by arrowheads are the region where the4

alignment was not accurate.5

(D) Voxel-wise NCC value map computed for the images shown in (C).6

4



Mano et al., 2020

Figure S5. Whole-brain analysis of PV, SST, ChAT, TH and Iba1 Expressing Cells, Related to Figure 2
5
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(A) Heatmap showing PV expressing cell density.1

(B) Layer-wise average density of PV expressing cells.2

(C) Heatmap showing SST expressing cell density.3

(D) Layer-wise average density of SST expressing cells.4

(E) Heatmap showing ChAT expressing cell density.5

(F) Layer-wise average density of ChAT expressing cells.6

(G) Heatmap showing Iba1 expressing cell density.7

(H) Layer-wise average density of Iba1 expressing cells.8

(I) The distribution of PV expression levels per cell in the isocortex. Each column (i.e. the region) was normalized so that the peak equals to 1.0.9

(J) The values of SSp-m, VISp, ILA and ECT were extracted from (I) and replotted as a distribution curve.10

(K-N) Raw PV immunostaining images in SSp-m (K), VISp (L), ILA (M), and ECT (N).11

(O) The distribution of SST expression levels per cell in the isocortex. Each column (i.e. the region) was normalized so that the peak equals to 1.0.12

(P) The values of SSp-m, VISp, ILA and ECT were extracted from (O) and replotted as a distribution curve.13

(Q-T) Raw SST immunostaining images in SSp-m (Q), VISp (R), ILA (S) and ECT (T).14

Brain region acronyms follow the ontology defined by the Allen Brain Atlas.15
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Figure S6. Iba1 expression level changes upon LPS administration, Related to Figure 2
(A) Mean Iba1+ cell density in the isocortex. Saline (gray) and LPS (blue) groups are compared. Data are shown as mean ± STD (n = 7 for each1

group).2

(B) Mean Iba1 expression level per cell in the isocortex.3

(C) Heatmap showing mean Iba1 expression level per cell in all brain regions outside the isocortex, comparing saline and LPS groups.4
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Figure S7. Whole-brain analysis of c-Fos expression under LPS administration, Related to Figure 4
(D) Voxel-wise p-value heatmap showing the affected regions by LPS. P-values of individual voxels were computed by c-Fos+ cell count between1

saline- and LPS-administered groups. The color lookup table is log scaled (base 10), where red color represents the regions that were activated2

(i.e. more c-Fos+ cells) by LPS, and blue represents the repressed regions. Voxels with no significance (p > 0.05) were uncolored. Background is3

nuclear staining image of CUBIC-Atlas for navigation. Step between consecutive slices is 0.34 mm.4
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Figure S8. Additional Data of Rabies Virus Tracer Experiment, Related to Figure 5
1

(A) P-value heatmap where the number of input cells were compared between male and female brains. The color lookup table is log scaled (base2

10), where red color represents the regions where more input cells were found in female brains, and blue represents the inverse. Regions with no3

statistical significance (p > 0.05) were assigned a gray color.4

(B) Raw GFP (black) and nuclear staining (RedDot2, purple) images around lateral septal nucleus (LS) and medial prepoptic area (MPO). The5

images are digitally reconstructed sagittal sections. Maximum intensity project (MIP) spanning 300 µm thickness.6

(C-H) The plot shows the normalized input cell count in regions where sexual dimorphisms were suggested.7

Of note, using RV injection and slice-based observation, Wang et al., 2015 investigated the input cell population of pro-opiomelanocortin (POMC)8

neurons and agouti-related peptide (AgRP) neurons in the ARH, another dominant cell types in the ARH. The brain areas containing the input cells9

to ARHKiss1+ neurons largely overlaped with those of POMC neurons and AgRP neurons. In some areas, however, interesting differences were10

observed. For example, in ventral tegmental nucleus (VTA) and nucleus incertus (NI), no input cells were detected for ARHKiss1+, while some input11

cells were reported to exist for POMC and AgRP. On the other hand, basomedial amygdalar nucleus (BMA), posterior amygdalar nucleus (PA),12

septofimbrial nucleus (SF), central amygdalar nucleus (CEA), substantia innominate (SI), triangular nucleus of septum (TRS), posterior intralaminar13

thalamic nucleus (PIL), midbrain reticular nucleus (MRN) and parabrachial nucleus (PB) contained small number of input cells to ARHKiss1+ neurons14

(Figure 5E,F,G), while they were not reported for POMC and AgRP neurons. This absence of input cells may reflect the actual biological differences,15

or it may reflect the superior sensitivity of our experimental methods to detect sparse populations. Further investigations are needed to draw16

conclusions.17

*p < 0.05, **p < 0.01; Welch’s t-test.18

Brain region acronyms follow the ontology defined by the Allen Brain Atlas.19
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