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A systems approach to studying biology uses a variety of mathematical, computational, 
and engineering tools to holistically understand and model properties of cells, tissues, 
and organisms. Building from early biochemical, genetic, and physiological studies, 
systems biology became established through the development of genome-wide 
methods, high-throughput procedures, modern computational processing power, and 
bioinformatics. Here, we highlight a variety of systems approaches to the study of 
biological rhythms that occur with a 24-h period—circadian rhythms. We review how 
systems methods have helped to elucidate complex behaviors of the circadian clock 
including temperature compensation, rhythmicity, and robustness. Finally, we explain 
the contribution of systems biology to the transcription–translation feedback loop and 
posttranslational oscillator models of circadian rhythms and describe new technologies 
and “–omics” approaches to understand circadian timekeeping and neurophysiology.

Keywords: systems biology, models, theory, RNA sequencing, neurophysiology, circadian rhythm, ribosome 
profiling

SYSTeMS BiOLOGY—A BRieF HiSTORY

In contrast to a reductionist approach, systems biology emphasizes the interaction of components 
rather than the components themselves: to see the forest for the trees. This holistic approach is 
not a modern idea, but can be traced as far back as the Greek Aristotle “…the totality is not, as 
it were, a mere heap, but the whole is something besides the parts…” In the modern era, Karl 
Ludwig von Bertalanffy is generally credited as one of the founders of general systems theory 
with his model of individual cell growth in the early 20th century (1). Later, the Dutch physicist 
Balthasar van der Pol working with electric circuits developed his eponymous equation to describe 
relaxation oscillations (2), which was used for theoretical models of neuronal systems (3, 4). In the 
1950s, Alan Hodgkin and Andrew Huxley described the first mathematical model of an action 
potential propagating along a neuron, which famously predicted the existence of ion channels 
before their experimental discovery (5), and Alan Turing proposed a reaction–diffusion system 
in “The Chemical Basis of Morphogenesis” to explain how an initially homogenous system—the 
embryo—forms patterns through the action of morphogens (6).

These early systems models of cellular behavior were overshadowed by the excitement of the 
molecular biology revolution. Geneticists and biochemists learned to devise assays to measure the 
impact of single genes and single enzymes. In the 1970s, Ronald Konopka in Seymour Benzer’s lab 
used chemical mutagenesis to screen fruit flies for defects in their rhythmic emergence from the 
pupae state. He discovered three alleles of the Period gene, which is one of the earliest examples 
of a gene determining behavior in an organism (7). For the next 30  years, circadian biologists 
mostly pursued reductionist approaches similar to Konopka’s strategy to examine circadian 
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behaviors in different organisms by knocking out single genes 
or isolating individual tissues.

The era of functional genomics and next-generation sequenc-
ing has begun to shift the balance back toward systems biol-
ogy. In the following sections, we review the contributions of 
mathematical models, microarray technology, RNA sequencing, 
proteomics, and neurophysiological approaches to systematically 
dissect circadian behavior and uncover new modes of regulation 
(for an overview, see Figure 1).

MODeLiNG THe SYSTeMS PROPeRTieS 
OF CiRCADiAN RHYTHMS

The circadian clock is an interconnected network—a network 
of small molecules and metabolites, a network of genes and 
proteins, and a network of cells, neurons, and tissues. At each 
level, the interacting network of components can create complex 
behaviors. These systems-level properties include three defining 
characteristics of circadian rhythms: (1) periodicity—rhythms 
are autonomous with a period that matches the daily 24-h rota-
tion of the Earth, (2) entrainment—rhythms can be reset by 
environmental cues such as light, temperature, or food intake, 
and (3) temperature compensation—periodicity of rhythms 
persistent despite fluctuations over physiologically relevant 
temperature ranges.

Before genetics led to the identification of molecular compo-
nents governing a transcription and translation feedback loop 
that underlies the mechanism of circadian oscillation in many 
organisms, theoretical studies sought to model how oscillation, 
periodicity, entrainment, and temperature compensation could 
arise. The first was Goodwin’s model of a molecular oscillator 
using negative feedback (8–10). Understanding the different 
types of behavior in networks have enabled mathematical biolo-
gists to make predictions about which biological processes affect 
circadian rhythm behavior such as period length and tempera-
ture compensation. For example, in a hypothetical biochemical 
network with negative feedback, there are necessary constraints 
on reaction rates for the generation of instability at steady state 
(11). Using this constraint and other ideas from signal process-
ing in the Goodwin model for circadian oscillation, it could be 
shown that transcription and translation rate are not important 
for setting period length, but instead a critical feature is the 
degradation rate of the repressor (12). These studies highlight the 
fundamental contributions of systems modelers even without 
knowledge of the molecular network underpinning circadian 
rhythms.

Identification of the molecular components of circadian 
rhythms led to an explosion of models incorporating these 
proteins and functions. Goldbeter’s model used non-linearity 
of Hill-type equations in the Goodwin model when he reported 
the first model of circadian rhythms based on observations of 
PERIOD phosphorylation and degradation in Drosophila (13). 
Non-linearity in feedback repression could occur through 
cooperative binding of multiple repressors to a promoter or via 
repressive multisite phosphorylation of a transcriptional activa-
tor. Derivations of this type of model have been used to examine 
Drosophila (13–19), Neurospora (14, 16, 20, 21), and mammalian 

circadian rhythms (22–30). In the next subsections, we discuss 
how these and other models contributed to our understanding of 
the systems properties of circadian rhythms.

Periodicity and Design of the 
Transcription–Translation Feedback Loop
The period of a biological rhythm is tied to the 24-h rotational 
movement of the Earth. Organisms across different domains of 
life evolved timing mechanisms called biological clocks to coor-
dinate function and behavior to specific times of the day (31). 
Each day environmental cues such as light and temperature reset 
your biological clock in a process called entrainment (32). Food 
can also entrain biological rhythms by affecting clock machinery 
in the liver (33, 34). Entrainment allows us to recover from the 
jet lag inducing effects of airplane travel by either advancing or 
delaying the phase of the circadian clock. Response to external 
cues is not instantaneous—timekeeping of the circadian clock 
persists, which is why we feel jet lagged in the first place.

Flexibility in period length was apparent from the earliest 
studies of mutant organisms (7, 35, 36). Systematic screening 
of chemical libraries also revealed chemical compounds that 
could alter period length by targeting specific clock proteins 
(24, 37–44). Pharmacological and/or genetic perturbation 
could extend the range of periods in the fibroblast from 27 to 
54 h (41) and suprachiasmatic nucleus (SCN) from 17 to 42 h 
(45). Investigating why some mutant organisms have short or 
long periods revealed the molecular mechanisms of circadian 
rhythms and researchers could begin to test models by designing 
and manipulating components in the circuit. They were perhaps 
inspired by synthetic bacteria genetic circuits that recapitulate 
transcriptional oscillations (46) and bistable switches (47). For 
circadian rhythms, mathematical modeling guided construction 
of a synthetic 26-h oscillator based on siRNA-based silencing of 
a tetracycline-dependent transactivator (48). Construction of a 
mammalian promoter/enhancer database allowed researchers to 
identify high-scoring or low-scoring cis-elements and validate 
high- or low-amplitude expression, respectively, in cells (49), 
which enabled synthetic reconstruction of different circadian 
phases in cells by mixing combinations of promoter elements 
(50, 51). Researchers have also implemented artificial photic 
input pathways to clock cells to investigate singularity behavior, 
in which the circadian clock is reset after perturbations of differ-
ent strengths and timing (52). More recently, researchers have 
succeeded in replacing the endogenous repressor in mice with 
a tunable one (53) and artificially manipulating the molecular 
circuitry of pacemaker cells in the brain (54, 55) to alter period 
length. These synthetic biology reconstruction experiments probe 
the sufficiency of circadian networks to generate oscillations and 
oscillations of different periods as well as test ideas about how 
network components interact and function within cells.

Periodicity and the Rise of the 
Posttranslation Circadian Oscillator
Scientists originally thought that a transcription–translation 
feedback network was required for 24-h rhythms. But then, a 
remarkable study was published. Working in cyanobacteria, 
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FiGuRe 1 | Systems approaches to studying circadian rhythms. On an organism level, researchers are using CRISPR/Cas9 and TALEN coupled with new 
sleep staging techniques to uncover mutations in genes that increase or decrease sleep. On a tissue level, new tissue clearing techniques such as CLARITY and 
CUBIC are enabling researchers to investigate the neuroanatomical basis of behavior (see Systems Neurophysiology). On a cell level, systems transcriptomics 
experiments have revealed not only rhythmic mRNA levels through microarrays and RNA sequencing but also other molecular details such as chromatin state, 
mRNA structure and modification, ribosome binding, and rhythmic protein abundance (see Systems Transcriptomics, Systems Proteomics and Metabolomics, and 
Systems Approaches to Study Translation Regulation in Circadian Rhythms). On a molecular level, reconstitution of a cyanobacteria posttranslational oscillator and 
the discovery of transcription/translation independent peroxiredoxin rhythms have expanded our understanding of circadian oscillations (see Periodicity and the Rise 
of the Posttranslation Circadian Oscillator). Systems modelers have discovered insights into constraints and parameters necessary for unique features of the 
circadian clock such as entrainment, periodicity, robustness, and temperature compensation (see Modeling the Systems Properties of Circadian Rhythms).
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Kondo and colleagues mixed a small number of cyanobacterial 
proteins KaiA, KaiB, and KaiC, and ATP in a test tube to produce 
rhythmic 24-h oscillations in KaiC protein phosphorylation 
(56). In a manner similar to simple chemical reaction–diffusion 
systems creating Turing patterns, 24-h periodicity could be 
established in the absence of a transcription–translation negative 
feedback loop architecture.

A few years later, it was discovered that an antioxidant 
enzyme called peroxiredoxin in cultured human red blood 
cells undergoes temperature-independent circadian cycles 
of hyperoxidation. Because red blood cells lack a nucleus and 
peroxiredoxin rhythms persist in the presence of transcription 
and translation inhibitors, these rhythms prove the existence of a 
non-transcriptional-based circadian oscillator in mammals (57) 
and was later found to be conserved in a wide range of species 
(58). In mice, rhythmic peroxiredoxin oxidation is thought to 
occur through hemoglobin-dependent H2O2 generation and 
proteasome degradation (59), but it remains unclear how rhyth-
mic oxygen delivery occurs in isolated cells and how the rhythms 
of peroxiredoxin oxidation are temperature compensated. In 
the future, a more detailed understanding of the relationship 
between rhythmic peroxiredoxin oxidation and canonical circa-
dian clocks is needed.

The reconstitution of a phosphorylation oscillator in cyano-
bacteria (56) prompted modelers and synthetic biologists to 
question what the minimal components are for a circadian 
oscillator. In cyanobacteria, biochemical studies have driven 
our understanding of the mechanism of the oscillator. KaiC was 
discovered to be both a kinase and a phosphatase (60–62). KaiC 
autophosphorylation is triggered by allosteric activation by KaiA 
(63, 64) and regulated through feedback inhibition by KaiB (60, 
65). Importantly, a sequential ordering of phosphorylation at two 
sites on KaiC is necessary for oscillation (66, 67) and remarkably, 
when Kai protein complexes from different starting phases are 
mixed, the phosphorylation state of the population remains in 
synchrony (68).

Several models have been proposed to explain the mechanism 
of oscillation (69–71) and synchrony of the cyanobacteria oscil-
lator on a population level (67, 72, 73). A central idea is that 
there is monomer shuffling between KaiC hexamers, which was 
proposed in mathematical models (72, 74) and by experiments 
from the Kondo laboratory (65, 68), and confirmed elsewhere by 
FRET experiments (75). Other models do not explicitly rely on 
monomer exchange for synchrony (67, 73), but rather synchrony 
arises as an emergent property of the system based on KaiA’s 
affinity for different phosphorylated forms of KaiC. Of course, 
concepts such as differential affinity and monomer exchange have 
been incorporated together into more sophisticated models of 
cyanobacteria rhythms (76, 77).

Studies in cyanobacteria provide a foundation to under-
stand the requirements (ordered phosphorylation, synchrony, 
etc.) for a generic phosphorylation oscillator. Most models of 
non-circadian phosphorylation oscillators require additional 
mechanisms for rhythmicity such as protein synthesis and 
degradation (78) or allosteric feedback from substrate (79, 80). 
However, a theoretical study demonstrated that autonomous 
circadian oscillations are possible with a single substrate 

reversibly phosphorylated at only two sites (81) and suggested 
that a well-defined ordering of phosphorylation states and 
sequestering checkpoints for enzyme activity could be design 
principles for single-molecule oscillators for the circadian clock 
and potentially other cellular oscillators. The Jolley model (81) 
results in a substrate with four possible modification states 
similar to MAPK (82) and cyanobacteria models (67). While a 
general phosphorylation oscillator has not yet been built based 
on these models, the reconstruction of temporal (56) and spatial 
(83) oscillators from purified components provide inspiration 
for future work. Furthermore, the recently reported success in 
transplanting the circadian clock from cyanobacteria into the 
non-circadian bacterium Escherichia coli (84) implies some 
amount generality for the network and design principles upon 
which circadian rhythms lie.

Temperature Compensation
Insensitivity to temperature was originally identified as an essen-
tial characteristic of biological time-measuring systems in bees, 
flies, and marine organisms (85–88) and references therein. In 
particular, it was postulated that temperature independence was 
the result of a temperature compensation mechanism involving 
the opposing effects of enzyme activities in response to changes in 
temperature (87). Researchers began to identify genetic mutants 
with defects in temperature compensation in Neurospora (89, 
90) and Drosophila (91, 92). In flies, repressor dimerization was 
thought to be involved in temperature compensation because 
loss of the repressor’s dimerization domain caused the period to 
strongly depend on temperature (91). Researchers incorporated 
these ideas into models of circadian rhythms by suggesting that 
nuclear import of the repressor decreases with temperature and 
repressor dimerization increases with temperature (93, 94). 
Other models emphasized the importance of degradation of the 
repressor (95, 96) and other parameters needed for temperature 
compensation (97). The conceptual point of these models is that 
for circadian rhythms to be temperature compensated, some 
biochemical reactions accelerate circadian oscillations, while 
other biochemical reactions decelerate circadian oscillations. 
The balance model supposes that the former acceleration reac-
tions are less sensitive to temperature, whereas the latter decel-
eration reactions are more sensitive to temperature. A molecular 
basis for this type of temperature compensation was proposed 
in plants (98) and also formulated mathematically as a balance 
equation (99) to explain how Neurospora repressor stability 
decreases with an increase in temperature (95, 100), which is 
ultimately caused by phosphorylation-dependent degradation 
from a kinase (101).

In 1968, Pittendrigh and colleagues argued against a balancing 
model in which temperature shortens a reaction in the first half of 
a circadian cycle while simultaneously lengthening a reaction in 
the second half of the cycle in their experiments with Drosophila 
(102). They used short light pulses to shift the phase of Drosophila 
pupae at different temperatures and showed that the period and 
wave form of the phase response curve changes only a little bit 
with temperature. They proposed a model where circadian output 
from a temperature-dependent oscillation is subjected to feed-
back inhibition from another temperature-dependent reaction 
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(102, 103). These early studies suggested a model in which the 
enzymatic reactions that comprise the clock are temperature 
compensated. However, the idea of a temperature-compensated 
enzyme is counterintuitive because most chemical processes are 
temperature dependent. In cyanobacteria, the kinetic profile of 
the phosphorylation to dephosphorylation ratio is temperature 
compensated in vitro (56, 104). This was the first indication that 
temperature compensation could occur through the enzymes 
themselves as opposed to compensation that occurs through 
competing biochemical reactions.

The canonical transcription–translation feedback loop 
underlying circadian rhythms in eukaryotes may also be affected 
by temperature-insensitive enzymatic reactions. In eukaryotes, 
it was first discovered in mammals that the phosphorylation-
dependent degradation rate of the repressor is temperature 
insensitive in cells, and temperature-insensitive phosphoryla-
tion is preserved in vitro (41). This suggests that temperature-
insensitive enzymatic reactions can influence the circadian 
transcription–translation network. In addition to component-
level temperature compensation (41), detailed examination of 
the degradation of the repressor revealed three distinct stages 
of degradation that depend on when during the circadian cycle 
protein translation is arrested (105). The authors in this study 
suggested that temperature-insensitive and -sensitive phospho-
rylation at different sites of the repressor are responsible for 
temperature compensation. In the future, it will be particularly 
interesting to uncover the mechanisms and structural basis of 
temperature compensation in these individual reactions and to 
synthetically engineer temperature compensation in circadian 
clocks similar to synthetically temperature-compensated genetic 
networks in bacteria (106).

Robustness to Gene Dosage
Circadian rhythms are surprisingly robust to changes in gene 
dosage—there has been much discussion about why knockout 
of core clock genes only results in subtle period lengthening 
or shortening (107). There have been efforts to understand 
networks effects by systematically altering individual gene lev-
els (108) or by globally altering transcription levels with drugs 
(109). Resistance to internal noise from the stochastic nature 
of biochemical networks in the cell is an essential property for 
a robust circadian clock network (110). Theoretical models 
suggested that intercellular coupling between individual oscil-
lator cells is necessary for synchrony and noise resistance (111). 
Indeed, dissociated SCN neurons and isolated cells from tissues 
such as lung and liver are arrhythmic compared to intact tis-
sues with altered rhythmicity (112, 113). Robustness is also 
ensured by interlocking-feedback loops at the genetic circuit 
level, for review, see Ref. (114), and has been featured in models 
of circadian rhythms from different organisms (17, 115–118). 
In mammals, genetic (119–122) and pharmacological (38, 44) 
perturbation of the secondary feedback loop showed that it 
primarily served as a stabilizing mechanism.

Modeling approaches have revealed that activator and repres-
sor complex formation are necessary for noise resistance (123) 
and that a 1:1 stoichiometric balance of repressors binding 

activators rather than binding DNA is important for robust 
circadian timekeeping (124). Experiments in mammals seem 
to support these models because rhythm generation in mouse 
embryonic fibroblasts can be abolished by constitutive expression 
of the mammalian repressor (125) or by artificially altering the 
stoichiometry between activators and repressors (126). Indeed, 
the natural stoichiometry between activators and repressors in a 
mouse liver is close to 1:1 as measured by western blotting (127) 
and mass spectrometry (128).

The difference in repression mechanisms—Hill-type non-
linearity from models based on the Goodwin oscillator or 
protein-based sequestration leads to subtle differences in the 
activity of the activator in circadian models as the concentra-
tion of the repressor increases. For Hill-type models, there is an 
all-or-none switch that occurs when multisite phosphorylation 
or cooperative binding reaches some critical level. The activator 
is like a light bulb that is on until it suddenly gets switched off. 
For protein-sequestration models, the activity of the activa-
tor linearly decreases as a function of the molar ratio between 
activator and repressor, which is like a light bulb slowly turned 
down by a dimmer. These differences can affect the synchronized 
period between coupled heterogeneous oscillators compared to 
the mean period of uncoupled oscillators (129). Importantly, 
understanding the differences in repression mechanisms for 
coupled oscillators can lead to testable predictions on how clock 
components interact with other proteins, such as regulation of 
the tumor antigen p53 (130).

SYSTeMS TRANSCRiPTOMiCS

identification of the Components of the 
Circadian Clock
On a tissue level, the central clock in mammals is located in 
a structure of the brain called the SCN. Ganglion cells in the 
retina detect light signals through a photopigment called mel-
anopsin and relay this information to the SCN. SCN neurons 
project to different regions of the brain and synchronize bio-
logical clocks in peripheral tissues by secretion of hormones 
as previously reviewed (131, 132). However, most tissues in 
an organism have the core transcriptional architecture for 
circadian rhythmicity including liver, lung, and muscles (133) 
as well as cultured cells (134–136).

The genetic network for circadian rhythms is based on 
delayed feedback repression of transcription. Briefly, a 
CLOCK:BMAL1 heterodimer activates transcription at pro-
moter elements called E-boxes. A protein called PERIOD (PER) 
heterodimerizes with another protein CRYPTOCHROME 
(CRY) and translocates to the nucleus where it represses 
transcription of the Period gene and other genes that acti-
vate Period transcription, reviewed elsewhere extensively 
(137–140). Several components of the core transcriptional 
network were identified in forward-genetics screens (i.e., 
random mutation of an organism’s genome and searching for 
mutants with abnormal rhythms) including Period (7) and 
Timeless (141) in Drosophila, Frequency (35) in Neurospora, 
and Clock (142, 143) in mice.
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Systems approaches have been successful in identifying other 
core clock components such as Bmal, which was identified 
using an iterative search for other bHLH proteins (144, 145). 
Genomics-based strategies helped to identify activators of Bmal 
such as Rora (122) and Nr1d1 (121), and functional genomics 
strategies in Drosophila revealed Clockwork Orange (146–148) as 
a homolog of the mammalian Dec1 and Dec2 (149).

Systems experiments to Study the 
Transcriptome
Some of the earliest systems approaches to study circadian rhythms 
were to simply analyze all the mRNA in a tissue or organism to 
determine which mRNAs had cyclic expression. These studies 
used microarrays to identify cycling mRNAs in Drosophila (150, 
151), in the mouse liver, heart, and SCN (152–155), rat pineal 
gland (156), isolated fibroblasts (157, 158), and in plants (159). 
There was considerable tissue specificity in rhythmic genes 
because only approximately 10% of cycling genes were common 
to at least one other tissue (160). Additionally, there are approxi-
mately 100-fold fewer cycling transcripts in NIH3T3 and U2OS 
cell culture models compared to mice tissue (161). This study also 
revealed 12-h oscillatory transcripts in liver, heart, lungs, and 
other tissues, but not in cultured cells (161). These “harmonic” 
rhythms are perturbed by a disrupted circadian clock in the SCN 
(162). Rhythmicity of the core clock component PER2 in these 
tissues could be confirmed with luminescent reporter mice (163).

Recent studies have begun to use RNA sequencing to measure 
steady-state mRNA expression in tissues such as the mouse liver 
(164–166) or to identify transcription factor-binding sites using 
chromatin-immunoprecipitation coupled with RNA-sequencing 
(CHIP-seq) (164–170). Comparative genomic approaches 
revealed the importance of E-boxes, D-boxes (171), and RREs 
(155, 171) in timing circadian mRNA expression, which have 
allowed ensemble-based predictions of phase response from 
combinations of these elements (25).

Systems experiments Analyzing 
Chromatin State
Next-generation sequencing experiments revealed both circadian 
initiation and recruitment of RNA polymerase II (RNAPII) to cir-
cadian promoters (164, 168) and concomitant circadian changes 
in chromatin state (164, 166, 168). In particular, H3K4me3 
histone methylation have circadian oscillations that slightly lag 
RNAPII occupancy (168). Circadian regulation of chromatin 
state was first observed in an increase in phosphorylation of 
histone H3S10 in the SCN in response to light (172). Additionally, 
rhythmic acetylation of histone 3 was observed in the promoters 
of Per1, Per2, and Cry1 in mouse liver (173, 174). CLOCK itself 
has intrinsic histone acetylase activity (175) and is rhythmically 
recruited to circadian promoters (174, 176). CLOCK can acetylate 
other non-histone proteins including BMAL1, which promotes 
recruitment of CRY1 and thus BMAL1–CLOCK inactivation 
(177). SIRT1, a sirtuin histone deacetylase whose activity depends 
on the coenzyme nicotinamide adenine dinucleotide (NAD+), 
interacts with CLOCK and can deacetylate BMAL1 (174) and 
PER2 (178). SIRT1 also controls H3K4me3 methylation through 

circadian deadenylation of the histone methyltransferase mixed-
lineage leukemia 1 (179). Circadian regulation results in cycles of 
NAD + biosynthesis (180), NAD + recycling (181), alters Clock 
and Bmal1 binding (182), and NAD redox rhythms have been 
observed directly in cells (183). Together, these studies suggest 
a direct link between metabolism and epigenetic regulation of 
circadian rhythms.

MicroRNAs (miRNAs) in Circadian 
Rhythms
In addition to discovering cycling transcripts, systems tran-
scriptomics experiments have uncovered other cycling RNAs 
such as long non-coding RNAs (lncRNAs) and miRNAs. For 
example, CHIP-seq experiments revealed clock proteins such as 
Clock, Bmal1, and Nr1d1 binding at sites outside of canonical 
gene promoters (166, 167, 169, 170, 184, 185), which suggested 
circadian regulation of non-protein-coding transcripts. MiRNAs 
bind target mRNAs typically in 3′ untranslated regions (3′ UTRs) 
to inhibit translation and destabilize the mRNA, for review see 
Ref. (186–189). Microarray studies uncovered miRNA expression 
inversely correlated with circadian activators Clock and Bmal1 
and positively correlated with circadian suppressors Per, Cry1, 
and Nr1d1 (190), and other miRNAs that have diurnal expression 
patterns (191). MiRNAs are regulated by circadian proteins such 
as CLOCK (170, 192, 193) and NR1D1 (194) and modulate the 
expression of circadian genes such as Bmal1 (195–198), Clock 
(193, 199, 200), the circadian polyA deadenylase Nocturnin (201), 
Per1 and Per2 (202–204), Clockwork Orange (205), Timeless in 
Drosophila (206), and Cry1 (207). Knockout of the core miRNA-
processing machinery in mouse liver revealed that ~30% of the 
rhythmic transcriptome is posttranscriptionally modulated by 
miRNAs (208).

lncRNAs in Circadian Rhythms
In addition to miRNAs, next-generation sequencing experiments 
have revealed extensive transcription of lncRNAs (209, 210) and 
circadian expression of lncRNAs (166, 211, 212). An in depth 
study revealed differential expression of 112 lncRNAs in the rat 
pineal gland, and light expression at night could modulate the 
level of some of these lncRNAs (213). A study of mouse liver 
revealed 19 out of 123 lncRNAs detected with robust oscillations 
and detected antisense transcripts associated with Per2 (166). 
Antisense transcription of Per2 in mice liver has been reported 
by others (164, 165) and originally in the silk moth (214), but 
it remains unclear what the function of antisense Per2 is for 
circadian rhythms. In Neurospora, the antisense transcript of 
frequency (called Qrf—Frq, spelled backward) is important for 
entrainment to light, oscillates in a reciprocal pattern to Frq, 
and promotes Frq gene silencing via heterochromatin formation 
(215–217). Deletion of a lncRNA associated with Prader–Willi 
syndrome in mice results in increased energy expenditure and 
altered expression of circadian genes such as Clock, Cry, and 
Per (218). Additionally, a lncRNA highly upregulated in liver 
perturbs the expression levels of Clock, Cry, and Per in hepatoma 
cells (219). Together, these studies suggest a role for non-protein-
coding transcripts in the regulation of circadian rhythms.
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Posttranscriptional Regulation of 
Circadian Rhythms
Next-generation sequencing studies have also examined to 
what extent rhythmic steady-state mRNA transcripts result 
from de novo rhythmic transcription versus rhythms via post-
transcriptional regulation. By analyzing expression of introns 
as an indicator of pre-mRNA levels, a study by Koike et  al. 
determined that the majority circadian mRNAs do not undergo 
rhythmic transcription (164). Another method to directly assess 
de novo transcription called Nascent-seq confirmed this result 
and further showed that many mRNAs with de novo rhythmic 
transcription do not have rhythms in steady levels of mRNA 
(165). A similar nascent-seq study in Drosophila also revealed a 
considerable posttranscriptional contribution to cycling mRNA 
amplitudes (220).

There are a variety of mechanisms for posttranscriptional 
regulation of circadian rhythms including splicing, mRNA 
export, polyadenylation, mRNA stability, methylation, and regu-
lated translation—for review, see Ref. (221). The first indication 
of posttranscriptional regulation of circadian rhythms was that 
stability of Drosophila Per mRNA oscillates (222), which was also 
later observed in mammals (223). Posttranscriptional regulators 
such as LARK bind to the 3′ UTR of Per1 mRNA to enhance PER1 
translation (224, 225). LARK also promotes alternative transla-
tion of the casein kinase homolog Doubletime in Drosophila 
(226). Researchers have uncovered other proteins that regulate 
translation of clock components. For example, the heterogenous 
nuclear ribonucleoprotein Q (hnRNP Q) modulates translation 
of Nr1d1, Per1, Per3, Cry1, and the rate-limiting enzyme in 
melatonin synthesis AANAT (227–232). Cry1 mRNA stability is 
also regulated by AU-rich element RNA-binding protein (AUF1) 
also known as hnRNP D (233, 234), and Per2 mRNA stability was 
found to be modulated by polypyrimidine tract-binding protein 
also known as hnRNP I (235).

mRNA PolyA Tail Length and Circadian 
Rhythms
Other mRNA processing mechanims may also posttranscription-
ally regulate circadian rhythms. The 3′ end of newly transcribed 
pre-mRNA in the nucleus is cleaved and a polyA tail is added 
at one of the several possible sites (236). Deadenylation of this 
polyA tail in the cytoplasm by enzymes such as the poly(A)-
specific ribonuclease and the Ccr4-Not complex can shorten 
tail length and accelerate mRNA degradation (237, 238). Daily 
variation in polyA tail length was first observed for vasopressin 
mRNA in the SCN (239). In Xenopus, another deadenylase called 
Nocturnin was discovered in a screen to detect rhythmically 
expressed mRNAs in retinal photoreceptors (240, 241) and was 
later shown to be expressed in multiple mouse tissues (242). 
Nocturnin is one of the few mRNAs that remain rhythmic after the 
liver clock is conditionally inactivated by drug-mediated Bmal1 
expression (243) and can be posttranscriptionally regulated by 
miR-122 (201). Mice lacking Nocturnin do not have any obvious 
circadian behavior deficiencies, but are resistant to diet-induced 
obesity (244). However, in Drosophila, loss of Nocturnin results in 
abnormal behavior rhythms in constant light (245). A microarray 

method to measure polyA tail length suggested that rhythmic 
nuclear adenylation is coupled to rhythmic transcription and that 
rhythmicity in polyA tail length is related to rhythmic protein 
expression (246). These studies suggest that posttranscriptional 
regulation by deadenylation may be important for proper circa-
dian rhythms and that next-generation sequencing techniques 
such as polyA tail profiling (247, 248) will be critical for fully 
understanding the contribution of polyA tail length to circadian 
rhythms.

Systems experiments to Measure mRNA 
Modification, Structure, and RNA-Binding 
Proteins
Besides polyadenylation, mRNA processing by other mechanisms 
may contribute to circadian rhythms. A recent study showed that 
reduction of Mettl3, an m6A mRNA methylase involved in mRNA 
processing and nuclear export, reduces m6A methylation of 
circadian transcripts and extends period (249). Next-generation 
sequencing studies of m6A methylation may reveal other contexts 
in which methylation of mRNA is important for circadian rhythms 
(250). In addition, other RNA-sequencing techniques to probe 
RNA secondary structure such as dimethyl sulfate sequencing—
DMS-seq and parallel analysis of RNA structure—PARS-seq 
(251, 252), BRIC-seq for mRNA stability (253, 254), and various 
methods to analyze RNA-binding sites of specific RNA-binding 
proteins such as CLIP, CLIP-seq, HITS-CLIP, iCLIP, and PAR-
CLIP (255–260) will be critical for understanding how mRNA 
processing is involved in circadian rhythms. For example, CLIP-
seq of mRNAs bound to cold-inducible binding protein, which is 
required for high-amplitude circadian gene expression, revealed 
binding to Clock and other circadian transcripts (261).

SYSTeMS PROTeOMiCS AND 
MeTABOLOMiCS

Circadian Proteomics
Researchers are beginning to use systems approaches to study 
the circadian proteome and metabolome. Using two-dimensional 
difference gel electrophoresis (2D-DIGE), Reddy and colleagues 
revealed that approximately 20% of the soluble proteins in the 
mouse liver oscillate. Surprisingly, for many rhythmic proteins, 
the corresponding mRNA was not rhythmic, which suggests 
translational and posttranslational control of protein rhythms 
(262). 2D-DIGE has also been used to investigate circadian dif-
ferences in the mouse retina (263) and day and night differences 
in the mouse heart (264). In addition to mice, 2D gel-based mass 
spectrometry has been used to investigate chronological changes 
in eukaryotic algae (265, 266) and in plants (267, 268).

Other groups have employed stable isotope labeling by amino 
acids in cell culture (SILAC) to compare two groups of sam-
ples—one mixed with “heavy” amino acids and one mixed with 
“light” amino acids based on the composition of different element 
isotopes (269). SILAC-based quantitative mass spectrometry has 
been used to uncover cycling proteins in the mouse liver (270, 
271) and SCN (272). Traditional SILAC approaches use chemical 
synthesis of peptides with isotopically labeled amino acids (269, 
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273) or gene expression systems in E. coli (274, 275). However, 
cell-free protein synthesis systems are potentially a more cost-
effect tool to express isotope-labeled peptides because the volume 
of the reaction is much lower and purification is easier because 
there is no need for culturing, harvesting, and disrupting cells 
(275–278). Recently, a cell-free protein synthesis system called 
the PURE system (279) coupled with high-resolution mass spec-
trometry in a workflow called MS-QBiC was used to quantify 20 
selected circadian clock proteins over a 24-h time series (128). 
This study estimated the absolute number of protein molecules 
for core clock components per cell and the delay between steady-
state levels of mRNA (measured by qPCR) and protein copy 
number (128).

In addition to SILAC, label-free approaches such as MaxLFQ 
(280) have been used to quantify proteins in mouse skeletal mus-
cle (281). Mass spectrometry has been used to examine the global 
proteome in cyanobacteria (282). Mass spectrometry has also 
been used to analyze the global phosphoproteome and revealed 
~5,000 phosphosites that significantly oscillate in the mouse 
liver (283) and ~3,000 phosphosites in Arabidopsis (284). Given 
the widespread discrepancies between transcript and protein 
rhythmicity in a number of organisms, in the future, it will be 
useful to understand the role of translation and posttranslational 
regulation as well as cycling protein modification states (e.g., 
phosphorylation) to circadian networks.

Circadian Metabolomics
Researchers have looked at rhythmic metabolites in humans 
(285–288) and in mice (289–292) and have shown that circadian 
proteins directly regulate metabolism (44, 184). Researchers have 
also used comprehensive metabolite profiling to analyze diet 
effects in mice (293–295) and the effects of sleep loss in humans 
(296–299). Computational databases have been developed to 
compare published transcriptomes, proteomes, and metabolomes 
(292). Metabolic profiling is still quite noisy compared to tran-
scriptome data at least for identifying tissue-specific signatures 
(300), and many challenges remain including identification of 
unknown metabolites, standardization of data repositories and 
reporting methods, and integration with other types of data. 
Researchers are beginning to use metabolic profiling over larger 
time courses and with higher resolution in cell culture lines 
(301). In the future, coupling these methods with gene knockout 
or knockdown of core clock components will enable researchers 
to identify connections between circadian rhythms and metabo-
lism. For example, are there harmonics in metabolite rhythms 
(i.e., multiples of a 24-h rhythm like 8- and 12-h rhythms) similar 
to the harmonics of mRNA rhythms (161, 162), and would these 
rhythms be influenced by circadian genes?

One benefit of systems studies is the development of a molecu-
lar timetable to detect an individual’s body time based on a single 
time point assay. Molecular timetables have been developed with 
mice transcriptome data (212, 302) and applied to mice (291) and 
human (288) metabolite data, proteomic data (128), and even 
human breath (303). In theory, metabolite timetables could ena-
ble researchers to hone chronotherapeutic strategies for clinical 
conditions. However, despite the strong evidence that circadian 
timing effects xenobiotic metabolism, bioavailability, and drug 

efficacy and that many of the most successful drugs in the United 
States target proteins with circadian rhythm components (212), 
ongoing clinical trials rarely exploit time-of-day-dependent drug 
delivery (304).

SYSTeMS APPROACHeS TO STuDY 
TRANSLATiON ReGuLATiON iN 
CiRCADiAN RHYTHMS

Although 10% of genes are rhythmic in the liver (152), de novo 
transcription is only responsible for a small fraction of this rhyth-
micity (164). Thus, gene expression studies using microarrays 
and RNA-sequencing may not correlate with translation of the 
corresponding mRNA nor with protein abundance (305). In the 
mouse liver, systems studies of the proteome are unable to detect 
low-abundant components of the core circadian circuit (270, 
271), unless special care is taken to examine a particular protein 
on a case-by-case basis (128). Thus, researchers have begun to 
use next-generation sequencing techniques of mRNA attached to 
mRNA in monosomes and polysomes (306, 307) and with affinity 
purification (308–310) as a proxy for protein abundance and to 
understand how translation regulation affects protein abundance.

It has been known for more than 50 years that perturbation of 
translation disrupts circadian rhythms (311). Until recently, there 
has been a shortage of good tools to measure translation directly. 
In 2009, Nicholas Ingolia in Jonathan Weissman’s lab developed 
a technique called ribosomal profiling, which uses RNA sequenc-
ing of ribosome-bound mRNA protected from RNAse degrada-
tion, to determine the location and abundance of ribosomes in 
the yeast transcriptome (312). Researchers have begun to use this 
method to study circadian rhythms in ribosomal occupancy (313, 
314). These studies discovered a class of rhthmically translated 
mRNAs without corresponding steady-state mRNA rhythms 
(313, 314), which in the case of mouse liver may be a result of 
rhythmic ribosomal biogenesis (315). Researchers have previ-
ously observed that global translation is rhythmic in the mouse 
liver (316, 317), which is probably a result of activation of the 
TORC1 pathway (315, 318–320). Interestingly, diurnally regu-
lated translation in the mouse liver is only moderately affected 
by knockout of the core clock component Bmal1 and many genes 
that contained 5′-terminal oligo pyrimidine tract or translation 
initiator of short 5′ untranslated region (5′-UTR) sequence have 
rhythms in ribosomal occupancy independent of trancriptional 
rhythms (321). These studies in addition to previous research 
(322–326) suggest that feeding rhythms can synchronize the liver 
in the absence of cues from neuronal pacemaker cells in the SCN.

The Janich and Jang studies (313, 314) also revealed wide-
spread circadian translation of upstream open reading frames 
(uORFs) in 5′ UTRs. Translation of uORFs globally represses 
translation efficiency—a measure of the ratio of ribosomal occu-
pancy, determined by ribosomal profiling, to steady-state mRNA, 
measured by RNA-sequencing (314). Interesting, many circadian 
mRNAs also have uORFs in their 5′ UTRs (Table  1), which 
may disrupt translation of the downstream coding sequence 
by ribosomal pausing on the mRNA, alternative translation, or 
other mechanisms (327). Ribosome pausing on uORFs may be 
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TABLe 1 | Number of upstream open reading frames (uORFs) in common 
circadian clock genes.

Gene name Ref Seq iD Number of uORFs uORF length (nt)

Bhlhe40 NM_011498 1 18

Bmal1 NM_007489
NM_001243048

4
2

72; 42; 21; 33
201; 171

Clock NM_007715
NM_001289826

3
4

66; 48; 30
339; 66; 48; 30

Cry1 NM_007771 2 36; 24

Cry2 NM_009963 0 —

CK1d NM_139059 2 27; 21

CK1e NM_013767 0 —
NM_001289898 0 —

NM_001289899 2 126; 66

Dbp NM_016974 2 12; 42

Nfil3 NM_017373 3 15; 51; 12

Nr1d1 NM_145434 3 117; 192; 21

Nr1d2 NM_011584 3 120; 120; 117

Per1 NM_011065
NM_001159367

1
1

15
15

Per2 NM_011066 1 6

Per3 NM_011067
NM_001289877
NM_001289878

4
4
4

63; 30; 84; 48
63; 30; 84; 48
63; 30; 84; 48

Rorc NM_011281 0 —

Tef NM_017376 1 291
NM_153484 0 —
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alleviated by the action of the non-canonical initiation factors 
density regulated protein (DENR) and multiple copies in T-cell 
lymphoma (MCT-1), which act to promote translation reinitia-
tion downstream of uORFs (328, 329). Depletion of DENR by 
shRNAs in NIH3T3 cells shortens the period by 1.5  h, which 
suggests that uORFs may be relevant for circadian function 
(314). In other biological contexts, repression of translation by 
uORFs can be regulated by trans-acting factors. For example, in 
Drosphila, the master switch gene Sex-lethal (Sxl) is important 
for sex, for review see Ref. (330–332). SXL-binding downstream 
of a short uORF on male-specific lethal (msl)-2 enhances transla-
tion repression by the uORF on downstream reading frame 
translation (333). During mitosis, one of the most translationally 
repressed mRNAs is early mitotic inhibitor 1 (Emi1) that inhibits 
the activity of the anaphase-promoting complex (334). Emi1 has 
multiple transcript isoforms and the isoform with several uORFs 
in the 5′ UTR is severely crippled for translation initiation in 
single-molecule reporter experiments (335). These studies sug-
gest that uORF-mediated translational repression is important in 
a variety of biological functions and may have an unexplored role 
in circadian rhythms.

What is the consequence of disrupted translation for circadian 
rhythms? One clue came when researchers showed that codon 

usage affects circadian function in cyanobacteria (336),  Neurospora 
(337), and Drosophila (338). While cyanobacteria with codon-
optimized Kai genes have enhanced circadian rhythmicty at 
cooler temperatures, this modification impairs cell growth, which 
suggests that non-optimal translation could provide an adaptive 
response to changes in the environment (336). In Neurospora, 
codon optimization of Frq alters FRQ protein structure, which 
impairs circadian rhythms (337). Similarly, in Drosophila, codon 
optimization results in conformational changes of the Drosophila 
PER protein altering PER phosphorylation, stability, and impairs 
behavioral rhythms (338). Additionally, it is becoming clear that 
translation control is interlinked with both circadian rhythms 
and sleep disorders. For example, Ataxin2 functions as a critical 
translation activator of Per2 in flies (339, 340), and individuals 
with disease mutations in human Ataxin2 have disturbed rapid 
eye movement sleep (341, 342).

SYSTeMS NeuROPHYSiOLOGY

Systems neurophysiologists are beginning to connect the circa-
dian circuit to more complex outputs from the clock such as activ-
ity rhythms. Forward genetics in mice have already uncovered 
core components in the circadian network (142), and researchers 
have begun to use forward genetics for complex behavior such as 
sleep (343). On the other hand, the development of TALEN (344), 
Zinc-Finger Nucleases (345), and CRISPR/Cas9 (346, 347) gene 
knockout systems have accelerated the pace at which researchers 
can pursue reverse genetics in mice. In particular, CRISPR/Cas9 
systems have been extensively modified to improve targeting effi-
ciency and specificity (346–353). However, the need for invasive 
techniques such as electroencephalography and electromyogra-
phy to characterize sleep hampers high-throughput phenotyping. 
To facilitate rapid phenotyping, researchers have developed a 
respiration-based, sleep staging system in combination with 
redundant CRISPR targeting to reveal new genes important for 
sleep regulation (354, 355). In particular, researchers generated 
and analyzed more than 21 different KO mice and discovered dif-
ferent ion channels that could increase or decrease sleep duration 
(355). These studies have revealed the genetic bases for behaviors 
such as sleep, but do not show how neural networks and struc-
tures in the brain are wired to carry out such behavior. In the past, 
researchers have used conventional histology and immunohisto-
chemistry of sliced brain sections to reveal the when and where of 
gene function, but recent advances in tissue clearing have begun 
to enable direct imaging of intact organs (356).

Optical sectioning using light-sheet microscopy in combina-
tion with recently developed tissue-clearing techniques is a 
potent strategy to begin to explore the neuroanatomical basis of 
behavior (357–362). Image analysis algorithms, automated com-
parative analysis, and feature extraction will enable researchers 
to quickly test and analyze neural activity in different parts of the 
brain with different mutant mice and under a variety of experi-
mental conditions. These approaches will be useful to determine 
what areas of the brain are affected by sleep/wake pharmaceutical 
reagents such as methamphetamine and to develop a whole-brain 
anatomical atlas to catalog and characterize every individual cell 
in the brain.
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CONCLuSiON

Systems experiments from modeling to metabolomics have 
significantly increased our understanding of circadian rhythms, 
but many challenges remain. For modeling, we still do not have a 
comprehensive understanding of temperature compensation nor 
the role individual enzymes have in temperature-independent and 
-dependent reactions. We do not understand the contribution of 
temperature-compensating reactions at the molecular, cell, tissue 
or organism level and how these temperature-compensating sys-
tems interface with one another. At an enzymatic level, we could 
learn much by designing and building de novo temperature-
compensated reactions or by converting temperature-sensitive 
enzymes into temperature-compensating ones. There is also a 
need for understanding how recently discovered posttranslational 
oscillators such as the peroxiredoxin system interface with the 
genetic circadian circuit, and for an evolutionary investigation 
into how and why these distinct circadian timekeeping systems 
arose. Modeling is needed to make connections between different 
timekeeping systems, different organization levels of timekeep-
ing from molecule to tissue, and between circadian rhythms and 
other rhythms such as the cell cycle.

For systems “–omics” researchers, there is a large variation 
in the rhythmicity of transcripts, metabolites, and proteomes 
detected even with similarly defined experimental systems. This 
may be in part due to how different algorithms detect rhythmic-
ity (153, 363, 364), differences in sampling intervals (every 2, 3, 
4, or 6  h), sampling duration, environmental conditions, and 
biological variability (365). As surveys of the circadian pro-
teome increase, there has been an increasing realization of the 
widespread gap between transcript rhythms and protein levels. 
Posttranscriptional and posttranslational studies that examine 
mRNA structure and processing, translation, and protein modi-
fication will enhance our understanding of how transcriptional 
rhythms become protein rhythms, and how rhythms could evolve 
without genetic underpinnings.

For systems neurophysiologists, there is a pressing need to 
develop fast and reproducible assays that connect behavioral 

phenotypes to particular features and neurons in the brain and 
other tissues. Developments in computational processing power, 
data storage, and deep learning approaches will aid researchers 
in handling and analyzing the overwhelming amount of data 
generated by systems studies. Nevertheless, it will be important 
to validate findings with molecular techniques, case studies, and 
synthetic biology approaches to reconstitute behavior. Finally, 
can we translate this knowledge base to relevance in the clinic? 
It will be important to develop new assays and algorithms for 
body time estimation from samples at one or two time points. 
A combination of transcriptome, metabolome, and proteome 
timetables may further reduce the need for additional samples 
and increase accuracy of body time estimation. Integration of 
chronotherapeutics to clinical trial design and dosing protocols 
may enhance the success of drug candidates and perhaps lead to a 
reevaluation of the timing of drug delivery to achieve the greatest 
benefit to patients.
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