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SUMMARY

Previous autonomous pattern-formation models
often assumed complex molecular and cellular net-
works. This theoretical study, however, shows that
a system composed of one substrate with multisite
phosphorylation and a pair of kinase and phospha-
tase can generate autonomous spatial information,
including complex stripe patterns. All (de-)phos-
phorylation reactions are described with a generic
Michaelis-Menten scheme, and all species freely
diffuse without pre-existing gradients. Computa-
tional simulation upon >23,000,000 randomly gener-
ated parameter sets revealed the design motifs of
cyclic reaction and enzyme sequestration by slow-
diffusing substrates. These motifs constitute short-
range positive and long-range negative feedback
loops to induce Turing instability. The width and
height of spatial patterns can be controlled inde-
pendently by distinct reaction-diffusion processes.
Therefore, multisite reversible post-translational
modification can be a ubiquitous source for various
patterns without requiring other complex regulations
such as autocatalytic regulation of enzymes and is
applicable to molecular mechanisms for inducing
subcellular localization of proteins driven by post-
translational modifications.
INTRODUCTION

Theoretical modeling has been a powerful tool to analyze

the mechanism of autonomous pattern formation in biological

systems (Karsenti, 2008; Kondo and Miura, 2010). One of the

best-known models is the Turing model deploying reaction-

diffusion equations (Turing, 1952). The Turing instability can arise

from a system with two components, an activator with a slow

diffusion rate and an inhibitor with a fast diffusion rate (Gierer

and Meinhardt, 1972). The activator increases the concentra-

tions of both the activator and the inhibitor within a short range

of space, while the inhibitor represses the concentration of the
C
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activator over a long range. The detailed mechanism to realize

the activation/inhibition can be varied; for example, an acti-

vator-depleted substrate scheme assumes that the inhibitory

pathway is passively mediated by the insufficient supply to pro-

duce the activator (Meinhardt, 2008).

The key features underlying the Turing model have been

discovered in the molecular and cellular mechanisms of biolog-

ical pattern formation. At a cellular-circuit level, biological exam-

ples of the Turing model were reported in pattern formation

of animal skin (Asai et al., 1999; Kondo and Asal, 1995) and in

the process of vertebrate morphogenesis (Economou et al.,

2012; M€uller et al., 2012; Sheth et al., 2012). At a molecular-

network level, a system consisting of a group of proteins called

MinC, MinD, and MinE is known to show typical spatiotemporal

patterns explained based on Turing instability (Raskin and

deBoer, 1999; Zieske andSchwille, 2013; Loose et al., 2008). Eu-

karyotic cells also employ reaction-diffusion systems, including

GTPase Cdc42 and kinase-substrate network of PAR proteins

and atypical protein kinase C (aPKC) (Etienne-Manneville and

Hall, 2002; Hoege and Hyman, 2013) as an underlying mecha-

nism for cellular pattern formation.

Theoretical models to simulate suchmolecular mechanisms of

pattern formation typically employed complex reaction networks

(e.g., oligomerization and/or mutual inhibition among PAR

proteins [Dawes and Munro, 2011; Tostevin and Howard,

2008] or cell-compartment specific activation of enzymatic activ-

ities [Alonso, 2016; Alonso and Bär, 2010, 2014; Halatek and

Frey, 2012; Otsuji et al., 2007]). Alternatively, a more generic

set of enzymes and substrates might be sufficient for autono-

mous pattern formation. Analysis using the generic but not too

abstractive reaction scheme such as Michaelis-Menten scheme

(Michaelis et al., 2011) allows us to compare the model parame-

ters with the biochemically measurable values. A generic set of

components to achieve reversible phosphorylation is one sub-

strate and a kinase and a phosphatase (Kholodenko, 2006).

Despite its simple setting, it has been found that reversible phos-

phorylation at a single substrate site can produce an ultrasensi-

tive response in the phosphorylation state of the substrate along

with a linear change of kinase/phosphatase activity (Goldbeter

and Koshland, 1981). If the number of phosphorylation sites is

increased, the phosphorylation status can have two or more

distinct steady states (Markevich et al., 2004; Thomson and Gu-

nawardena, 2009). It was also discovered that a traveling wave
ell Reports 19, 863–874, April 25, 2017 ª 2017 The Author(s). 863
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Figure 1. Autonomous Spatial Pattern For-

mation Arises from Reversible Dual Phos-

phorylation

(A) A scheme for reversible two-site phosphoryla-

tion. The enzymatic reaction follows a Michaelis-

Menten reaction scheme with two parameters; k

denotes the reaction speed and Km corresponds to

the inverse of enzyme-substrate affinity. Green

arrow indicates the phosphorylation reaction. Blue

arrow indicates the de-phosphorylation reaction.

(B) An example of pattern formation using the

reaction scheme in (A). Horizontal dotted line in-

dicates the time section at t = 1,000 min shown in

(C). Vertical dotted line indicates the spatial section

at the position of 2.5 and 7.5 mm shown in (D). The

parameter set used in this figure is ‘‘representative

parameter set for cluster 1’’ shown in Table S1.

(C) A section of (B) at t = 1,000 min shows the

spatial pattern at the steady state. Yellow-shaded

area corresponds to the S01 peak area, where S01

concentration is high.

(D) Time course of the concentration change at the

position of 2.5 and 7.5 mm.

See also Figure S1 and Table S1.
(Markevich et al., 2006) and self-sustained oscillation (Jolley

et al., 2012) can arise from a reversible multisite phosphorylation

system. Importantly, these models of reversible multisite phos-

phorylation system did not assume any typical allosteric regula-

tion of enzymes (i.e., an enzyme is regulated by amolecule that is

not a direct substrate of the reaction but acts on the enzyme

through a site different from a catalytic pocket or a substrate

recognition site), changes in the amount of protein through pro-

tein synthesis and degradation, or any special function of en-

zymes and substrate (e.g., autocatalytic activity), suggesting

that, under the proper combination of reaction parameters, a

simple reversible phosphorylation reaction can be the core of

complex and autonomous behaviors in biological systems.

A series of studies has investigated that the reversible and

multisite post-translational scheme can amplify and maintain

the spatial information in the presence of pre-existing patterning

such as spatial compartmentalization/gradient of preferential

reaction, components, and external signals (Alam-Nazki and

Krishnan, 2012, 2013, 2015), or with the ability of similar revers-

ible post-translational systems to process spatially inhomoge-

neous stimulus (Krishnan, 2009; Seaton and Krishnan, 2011).

Nonetheless, it had been unclear whether a stable spatial

pattern can autonomously arise from reversible multisite phos-

phorylation in the absence of any pre-existing patterning. In

this study, we show that reversible two-site phosphorylation

described as Michaelis-Menten-type reaction processes is suf-

ficient for autonomous and stable spatial pattern formation. A

random parameter search revealed the core mechanisms for

autonomous pattern formation; local enzymatic sequestration

by the interaction between enzymes and slow-diffusing sub-

strates inhibits the production of fast-diffusing substrates. The

sequestration creates an inflow of fast-diffusion substrates to-

ward a specific area, maintaining spatial heterogeneity. Sto-

chastic simulation further revealed the presence of two types
864 Cell Reports 19, 863–874, April 25, 2017
of reaction-diffusion reaction cycles that operate to maintain a

local accumulation of substrate with specific phosphorylation

states.

RESULTS

Autonomous Spatial Pattern Formation Arises from
Reversible Dual Phosphorylation
To construct a simple pattern-formation system, we consider a

minimalmodel that comprises a kinase, a phosphatase, and their

single substrate. It was analytically shown that, if the substrate

has only one phosphorylation site, this system will always

converge to a temporally and spatially uniform steady state,

and a spatial pattern will not emerge autonomously (Supple-

mental Experimental Procedures). Therefore, we considered a

dual-phosphorylation system where the two phosphorylation

sites on the substrate are phosphorylated by a common kinase

and de-phosphorylated by a common phosphatase (Figure 1A).

In this model, the four possible modification states will be called

as S00, S10, S01, and S11, respectively; S00 accounts for dephos-

phorylated substrate, S10 and S01 account for mono-phosphor-

ylated substrate, and S11 accounts for di-phosphorylated

substrate. Each chemical species is (de-)phosphorylated and

diffuses with certain reaction and diffusion rates (Figure 1A).

Mass-action kinetics is applied to one-to-one binding of enzyme

and substrate and the phosphate transfer reactions. To simplify

the simulation process, a Michaelis-Menten approximation is

applied, but a more detailed model without this approximation

will be considered in the later sections. Each substrate diffuses

in one-dimensional (1D) space with circular boundary condition

following Fick’s law of diffusion. The 1D system size was set to

10 mm corresponding to cellular/subcellular scale. Consistent

with our previous study (Jolley et al., 2012), particular parameter

sets showed oscillatory behavior (Figures S1A and S1B). We
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B Figure 2. Three Design Motifs in Parameters

for Spatial Pattern Formation

(A) Workflow for parameter motif identification.

(B) Clustering of the spatial parameter sets with

Ward’s algorithm.

(C–E) Parameter histograms of the spatial param-

eter sets. For each cluster, schematic representa-

tion is drawn at the top. Fast reactions are repre-

sented with thick arrows. Substrates with highest

affinity to kinase (E) and phosphatase (F) are indi-

cated by attaching the corresponding enzymes to

the edge. Diffusion coefficients are represented as

the labels ‘‘fast’’ or ‘‘slow.’’

See also Figure S2.
further found that reversible two-site phosphorylation can induce

autonomous pattern formation under certain parameter combi-

nations (Figures 1B–1D).

Three Design Motifs in Parameters for Spatial Pattern
Formation
To elucidate the underlying design motifs for spatial pattern for-

mation, a comprehensive random parameter search was con-

ducted (Figure 2A). Reaction rate constants (k), Michaelis con-

stants (Km), and diffusion coefficients (D) were randomly chosen

from 1–1,000 min–1, 0.01–1,000 mM, and 0.001–100 mm2 min–1

(1.67 3 10�5-1.67 mm2 s–1), respectively. These ranges include

biochemically probable reaction and diffusion velocities based
C

on the previous studies (Arrio-Dupont

et al., 2000; Jolley et al., 2012; Markevich

et al., 2004). As a result, about 0.05% and

0.08% of the total parameter sets yielded

spatial patterns and oscillatory behaviors,

respectively. These parameter sets were

then clustered by Ward’s algorithm. The

reaction-diffusion scheme in our model is

unchanged if the first and second phos-

phorylation sites are exchanged (e.g.,

exchanging S01 and S10) and if the kinase

and phosphatase are exchanged (e.g.,

exchanging S00 and S11). To take such

symmetries into account and extract qual-

itatively different clusters, thedistancema-

trix for the clusteringwasmade to incorpo-

rate symmetrical reflection and rotation.

The resulting clustering dendrogram sug-

gested the existence of two clusters for

oscillatory parameter sets (Figure S2A)

and three clusters for spatial parameter

sets (Figure 2B).

Two clusters in oscillatory parameter

sets commonly have two design motifs

consistent with the previous study (Jolley

et al., 2012) (Figures S2B and S2C). In

brief, the biochemical system in oscilla-

tory parameter sets tends to have clock-

wise cyclic reactions (S00/S01/S11/

S10). In addition, a particular substrate
tends to sequestrate an enzyme due to its strong substrate-

enzyme affinity, leading to synchronization of substrate states.

For example, lowKm5 results in strong binding of S01 to phospha-

tase in cluster 1. Therefore, S01 sequestrates phosphatase and

inhibits the S11/S10 step, leading to synchronization of sub-

strate states at S11. Cluster 2 can be interpreted as a 90-degree

rotation of cluster 1. These ‘‘reaction’’ and ‘‘binding’’ motifs

found in the oscillatory clusters are similarly conserved in spatial

clusters 1 and 2 (Figures 2C and 2D). Notably, a bias of diffusion

rates was found in spatial parameter sets (‘‘diffusion’’ motif) but

not in oscillatory parameter sets. To further investigate the roles

of the three design motifs in spatial pattern formation, we focus

on cluster 1 in the following sections without much loss of
ell Reports 19, 863–874, April 25, 2017 865
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D

B Figure 3. Inner and Outer Reaction-Diffu-

sion Cycles Account for Peak Shape

(A) Schematic representation of reaction motif (k)

for cyclic reaction direction, binding motif (Km) for

enzymatic sequestration, and diffusion motif (D) for

biased diffusion velocity.

(B) Applying a constraint on the condition(s) of

random parameter search corresponding to the

three design motifs improves the rate of finding

parameter sets for spatial pattern formation.

(C) Schematic representation of the ‘‘inner’’ and

‘‘outer’’ cycles.

(D) Spatial distribution of kinase-driven reaction

rates (upper half) and phosphatase-driven reaction

rates (lower half) at the steady state of spatial

pattern formation. The simulation is conducted

using the representative typical parameter set for

spatial cluster 1 (Table S1). The yellow-shaded

area corresponds to the S01 peak area.

(E) Three significant pattern-determining factors

(k3, k5, and DS01) were altered one by one in bifur-

cation analyses from the original values in the

representative parameter set shown by the red

dotted lines. For each value on the horizontal axis,

the two dots represent the peak and trough con-

centration of S01 in the resultant spatial pattern.

The color of the dots stands for the width of the

peak. Black dot means spatially uniform steady

state. ‘‘Oscillation’’ indicates the presence of

temporal oscillation. In the other parameter areas

with no dot or indication, the calculation failed

(diverged) probably because the parameter value

is close to the bifurcation point.

(F) Example distributions of substrates arising from

modified parameter sets. The indicated parameter

was either increased 3-fold or decreased to

one-third compared with original representative

parameter set.

See also Figure S3 and Table S1.
generality because cluster 1 is the largest cluster, and because

cluster 1 and its rotationally symmetric cluster (cluster 2)

together account for more than 85% of all spatial parameter

sets. Mechanism of pattern formation in cluster 3 (Figure 2E)

will be revisited in the later section.

Necessity of Three Design Motifs
Three design motifs in cluster 1 can be represented as follows

(Figure 3A). For the ‘‘reaction’’ motif, reaction rates (k1 and k8)

are biased toward the clockwise direction. For the ‘‘binding’’

motif, Michaelis constants (Km4 and Km5) are biased to promote

kinase sequestration by S10 and phosphatase sequestration by

S01, preventing the other species from binding the enzymes.

For the ‘‘diffusion’’ motif, diffusion rates (D) of the enzyme-se-

questrating substrates (i.e., DS01 and DS10) are extremely slow,
866 Cell Reports 19, 863–874, April 25, 2017
while those of the other substrates (i.e.,

DS00 and DS11) are fast. Biased parameter

searches with constraints reflecting these

motifs resulted in an improved hit rate

for spatial patterns (Figure 3B). When all

three types of bias were implemented,
the hit rate synergistically increased to as much as 1.86%, a

more than a 30-fold increase from the original rate, suggesting

that these three design motifs work cooperatively in spatial

pattern formation.

Inner and Outer Reaction-Diffusion Cycles Account for
Peak Shape
To elucidate the underlying reaction-diffusion mechanism of

spatial pattern formation,we investigateda representative stereo-

typical parameter set belonging to spatial cluster 1 (Table S1).

There are two characteristic areas in the steady-state distribution,

where S01 and S10 are abundant (i.e., S01 andS10 peak areas) (see

Figure1C).Asexpected from thedistributionpattern, certain reac-

tions tend to occur in a limited range of space at the steady state

(Figure 3D). By inspecting such spatially restricted reactions, we



hypothesized that there are two typesof reaction-diffusion cycles,

namely, the ‘‘inner’’ and ‘‘outer’’ cycles (Figure3C). The ‘‘inner’’ cy-

cle can be defined by S01/S00/S01 (occurring at the yellow

shaded area in Figure 3D). Once an S01 substrate is converted

to S00, S00 eventually returns to S01 and closes the ‘‘inner’’ cycle,

since there is almost no reaction in the direction of S00/S10

throughout 1D space. We also note that another ‘‘inner’’ cycle

can be similarly defined by S10/S11/S10.

On the other hand, the ‘‘outer’’ cycle can be defined by S01/

S11/S10/S00/S01. This ‘‘outer’’ cycle starts from the reaction

S01/S11 that predominantly occurs at the S01 peak area (Fig-

ure 3D, S01/S11). Note that there is almost no reaction of the

direct conversion of S11/S01 throughout 1D space. Then, S11

likely undergoes a transportation from S01 peak area to S10

peak area, because S11 is abundant at the S01 peak area and

depleted at the S10 peak area (Figure 1C). The subsequent reac-

tion S11/S10 occurs at the S10 peak area (Figure 3D, S11/S10).

A similar explanation is applicable for the reaction-diffusion pro-

cess S10/S00/S01.

To extract the decisive parameters for peak height and width,

we conducted comprehensive bifurcation analyses (Figures 3E

and S3). We found three parameters (k3, k5, and DS01) (Figure 3E)

and their symmetrical counterparts (k6, k4, andDS10) (Figure S3A)

are markedly important for determining peak height and width.

For example, a reaction parameter (k3) of the first reaction in

the ‘‘outer’’ cycle largely affects peak width in a negative manner

(Figure 3F, left). On the other hand, parameters (k5, and DS01)

involved in the ‘‘inner’’ cycle largely affects peak height: diffusion

of S01 (DS01) attenuates the ‘‘inner’’ cycle by facilitating the

outflow of S01 from its peak, and its decrease leads to a higher

peak (Figure 3F, right). Similarly, peak growth is also facilitated

by attenuating the outflow of S01 from its peak by accelerating

k5 (Figure 3F, middle). In summary, stimulation of the ‘‘outer’’ cy-

cle carries substrates away fromS01 peak to the other area, lead-

ing to a narrower peak. By contrast, stimulation of the ‘‘inner’’ cy-

cle keeps substrates inside the peak and leads to a higher peak.

Stochastic Simulations Directly Track the ‘‘Inner’’ and
‘‘Outer’’ Reaction-Diffusion Cycles
To validate the existence of ‘‘inner’’ and ‘‘outer’’ cycles, we next

aimed todirectlyobserve thebiochemicalmechanismsunderlying

the spatial pattern formation by conducting a simulation using a

stochastic simulation algorithm (SSA) (Gillespie, 1977), which

can track individualmolecules and their reactions at each position

and time. Note that substrate-free enzymes and substrate-

enzyme complexes are not explicitly considered in the presence

ofMichaelis-Mentenapproximation. ToconductSSAsimulations,

representative parameter set for cluster 1 was converted to

mass-action parameters without Michaelis-Menten approxima-

tion (TableS2). For the sakeof simplicity, all diffusion rates for sub-

strate-freeenzymesandall typesof enzyme-substratecomplexes

are chosen to be the center of the parameter range used for

random parameter search (i.e., 0.01667 mm2 s–1).

With this setting, the total number of molecules was changed

to search for the minimal number of molecules that can yield a

spatial pattern (Figure 4A). A simulation with 100 enzyme and

150,000 substrate molecules results in a stable spatial pattern

that remains at the same spatial position for nearly 1,000 min.
The distribution of each substrate averaged throughout

100 min of simulation time with SSA (Figure S4A, left column)

is mostly similar to those of the deterministic partial differential

equation (PDE) (see Figure 1C). In addition, diffusion rates of

substrate-free enzymes and enzyme-substrate complexes do

not qualitatively change the steady-state spatial pattern at least

for the representative parameter set, suggesting that the spatial

pattern formation observed in the PDE model is not an artifact

caused by Michaelis-Menten approximation (Figure S4B).

Surprisingly, spatial pattern is still visible in the simulation with

a single enzyme and 100 substrate molecules. Although the

peak position of S01 fluctuates, the distribution pattern across

1D space at defined time shows a spatial heterogeneity qualita-

tively different from random noise arising from a parameter set

without any design motifs for spatial pattern formation (Figures

4A and 4B). Becausemany reaction events are required to calcu-

late the histogram of reaction rates, we analyzed the simulation

with 100 enzyme and 150,000 substrate molecules in the

following analysis. Nevertheless, the observed pattern formation

with a small number of enzyme and substrate molecules

suggests that pattern formation by reversible multisite phos-

phorylation can effectively work in subcellular compartments

with a limited number of molecules.

To verify the existence of the ‘‘inner’’ and ‘‘outer’’ cycles, we

next calculated the distribution of each enzymatic reaction and

diffusion events in the SSA simulation (Figure S4A). Detailed in-

spection of these distributions confirmed the existence of the ‘‘in-

ner’’ and ‘‘outer’’ cycles (Figure 4C). For example, ES00/01 and

FS01/00 are both enriched within the S01 peak area (Figure S4A,

left column),which corresponds to the ‘‘inner’’ cycle (S01/S00/

S01) predominant in S01 peak area.On theother hand, the first half

of the ‘‘outer’’ cycle (S01/S11/S10) starts at S01 peak area with

the formation of ES01/11 to produce S11 (Figure S4A, left col-

umn). The fast-diffusing S11 is then transported from the S01

peak area to the S10 peak area (Figure S4A, right column) and re-

sults in FS11/10 formation, leading toS10 production (FigureS4A,

left column). Similarly, the second half of the ‘‘outer’’ cycle (S10/

S00/S01) continues at the S10 peak area with the formation of

FS10/00 to produce S00 (Figure S4A, left column). The fast-

diffusing S00 is then transported from S10 peak area to S01 peak

area (Figure S4A, right column) and results in ES00/01 formation,

leading to S01 production (Figure S4A, left column).

To more directly observe the ‘‘inner’’ and ‘‘outer’’ cycles, we

tracked a single molecule over a long trajectory (Figure 4D).

When an S01 molecule is converted to S00, the subsequent enzy-

matic reaction is almost always the conversion to S01 inside S01

peak area (‘‘inner’’ cycle). On the other hand, when the S01 mole-

cule is converted to S11, the subsequent S10 production tends to

occur outside theS01 peak area (the first half of the ‘‘outer’’ cycle).

Three Design Motifs Cooperatively Contribute to the
‘‘Inner’’ and ‘‘Outer’’ Cycles to Generate Spatial Pattern
We then sampled 200 trajectories in the representative param-

eter set. In the case of trajectories for S11 and S00 molecules,

there are four possible trajectories as shown in Figure 5A. The

trajectories other than the ‘‘inner’’ and ‘‘outer’’ cycles are termed

as ‘‘other pathways.’’ The re-production of S01 through the ‘‘in-

ner’’ cycle (S01/S00/S01) mostly occurs within the S01 peak
Cell Reports 19, 863–874, April 25, 2017 867
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Figure 4. Stochastic Simulations Directly

Track Inner and Outer Reaction-Diffusion

Cycles

(A) Time evolution of S01 concentration based on

the stochastic simulation. Total number of mole-

cules altered in three ways as shown in the black

box (top left, top right, and bottom left). A simula-

tion with a parameter set that does not retain any

motifs for spatial parameter set is also shown in the

bottom right.

(B) Distribution of each substrate at t = 100min with

the indicated condition for the total amount of

substrate and enzymes and the parameter set.

(C) Overall event following the ‘‘inner’’ and ‘‘outer’’

cycles. The cyclic reaction bias and enzyme

sequestration underlie the mutually exclusive

relationship between S01 and S10. Phosphatase

sequestration by S01 inhibits the production of S10

and S00 in the S01 peak area. Absence of S10 in this

area allows the use of kinase to produce S01 from

S00, to further promote the phosphatase seques-

tration. The efficient consumption of S00 creates a

concentration gradient that promotes the influx

of fast-diffusing S00 from the surrounding area. A

similar story is valid for the symmetrical S10 peak.

(D) Single-molecule trajectory based on the sto-

chastic simulation with spatial parameter set.

See also Figure S4 and Table S2.
area (Figure 5B). On the other hand, the first half of the ‘‘outer’’

cycle (S01/S11/S10) starts in the S01 peak area but ends in

the S10 peak area (Figure 5B).

The essential roles of ‘‘reaction,’’ ‘‘binding,’’ and ‘‘diffusion’’

motifs were examined by removing each one of them from the

stochastic simulation model (Table S2). The model without the

‘‘reaction’’ motif failed to generate spatial patterns, with the po-

sition of each unit reaction having become totally random (Fig-

ure 5C). Furthermore, all reactions were restricted to the ‘‘inner’’

cycle in this simulation. A similar result was observed when

the ‘‘diffusion’’ motif was removed (Figure 5D). These results

indicate that both ‘‘reaction’’ and ‘‘diffusion’’ motifs are required

for the establishment of the ‘‘outer’’ cycle (S01/S11/S10). The

‘‘reaction’’ motif is important for the ‘‘outer’’ cycle, because the

‘‘outer’’ cycle requires high concentration of S01 molecule that

is supported by a high reaction rate of S00/S01 in the ‘‘reaction’’

motif. The ‘‘diffusion’’ motif is also important for the ‘‘outer’’ cycle

(S01/S11/S10) because the ‘‘outer’’ cycle requires free kinase

molecules, which are easily trapped by S10 without a low diffu-

sion rate of S10 in the ‘‘diffusion’’ motif.
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In contrast, the model without the

‘‘binding’’ motif preserved the ‘‘outer’’

cycle but still failed to generate spatial

patterns (Figure 5E). The model without

the ‘‘binding’’ motif allows ‘‘other path-

ways’’ (S01/S11/S01 or S10/S11/

S01), which are prohibited with spatial

parameter sets, suggesting that the

‘‘binding’’ motif can exclude other reac-

tions than ‘‘inner’’ or ‘‘outer’’ cycles.

Note that the model without three motifs
altogether led to the complete collapse of reaction order, with

a similar number of reactions in every direction (Figure 5F).

Three Design Motifs Contribute to Short-Range Positive
Feedback and Long-Range Negative Feedback Loops to
Generate Spatial Pattern
The previous theoretical studies propose that autonomous spatial

pattern formation requires a short-range positive feedback and

a long-range negative feedback (Gierer and Meinhardt, 1972;

Turing, 1952). In our model, the ‘‘inner’’ and ‘‘outer’’ cycles seems

to act as short-range positive feedback and long-range negative

feedback loops, respectively (Figure 6A). In the case of short-

range positive feedback loop, S01 indirectly activates its own pro-

duction through the ‘‘inner’’ cycle. In detail, the reaction S00/S01

in the ‘‘inner’’ cycle is mediated by the kinase that is strongly trap-

ped by S10. Alternatively, S01 strongly binds to the phosphatase

and effectively represses the production of S10 from S11. Thus,

S01 and S10 are mutually exclusive each other, creating a positive

feedback. Because S01 is the slow-diffusing molecule, this

positive feedback loop acts within a short range. The efficient
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C D

E
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A Figure 5. Three Design Motifs Cooperatively

Contribute to Inner and Outer Cycles to

Generate Spatial Pattern

(A) Diagrams explaining the reaction track classi-

fied as the ‘‘inner’’ cycle, the ‘‘outer’’ cycle, and

‘‘other pathways.’’

(B) Transition diagram of individual molecules

derived from cluster 1-representative parameter

set. The tracks are extracted from the reactions

that occurred during 50 min in the steady state. To

highlight the exclusive existence of ‘‘inner’’ and

‘‘outer’’ cycle and the absence of any other tran-

sitions, only the transitions following the triplet or-

der shown in the box are selected for drawing. For

each pathway, the fast-diffusing species’ move-

ments are represented as the lines, whose starting

and ending points are shown as dots and triangles,

respectively. In this condition, no reaction was

found to follow the ‘‘other pathways.’’

(C–F) The parameter sets are changed to the ones

with collapsed motifs. For (C) and (D), there are no

transitions in the direction of the ‘‘outer’’ cycle and

‘‘other pathways.’’

See also Table S2.
S00/S01 reaction promotes the consumption of S00 at this area.

The S00 gradient results in the inflow of fast-diffusing S00 toward

the S01 peak area, further promoting the S00/S01 reaction. In

the case of a long-range negative feedback loop, we can assume

two types of antagonizing effect to the production of S01. The first

type is the depletion of fast-diffusing substrate molecule S00.
C

Indeed, the level of S01 production is sup-

pressed at the center of S01 (Figure 3D),

and, when the width of S01 increased, the

S01 maxima started to split apart (Fig-

ure 3F). This behavior is typically observed

in an activator-depleted substrate model

(Meinhardt, 2008). The second type is the

indirect suppression of S01 production

through the ‘‘outer’’ cycle. In detail, S01

indirectly activates the production of S10

through the ‘‘outer’’ cycle, in which S01 is

first converted to S11 in the S01 peak area.

S11 then diffuses rapidly from S01 peak

area to S10 peak area. In the S10 peak

area, S11 is eventually converted into S10.

Since S10 strongly binds to a kinase and

effectively represses S01 production from

S00, the ‘‘outer’’ cycle can form the nega-

tive feedback loop for S01. Because S11 is

the fast-diffusing molecule, this negative

feedback loop acts over a long range.

A Reversible Two-Site Modification
Model Can Generate Complex
Pattern Formation in Two-
Dimensional Space
The Turing mechanism is well known to

elicit various spatial patterns when it oper-
ates in two-dimensional (2D) space. To verify the potential of a

reversible two-site modification model, we extended our simula-

tion in 2D space with periodic boundary condition. The area was

set to 900 mm2 corresponding to the order of eukaryotic cell

membrane (Kholodenko et al., 2000). Because a representative

parameter set in cluster 1 has a symmetric and mutually
ell Reports 19, 863–874, April 25, 2017 869



A B

C

D

E

Figure 6. A Reversible Two-Site Modifica-

tion Model Can Generate Complex Pattern

Formation in 2D Space

(A) The ‘‘inner’’ cycle with phosphatase seques-

tration contributes to the short-range positive

feedback for the production of S01. The ‘‘outer’’

cycle with kinase sequestration contributes to

long-range negative feedback for the production

of S01.

(B) 2D patterns from cluster 1-representative

parameter set.

(C–E) Modifying one of the parameters in the

cluster 1-representative parameter set resulted in

various pattern shapes. Only the distributions of

S01 are shown. Changes in k3 predominantly affect

the peak width. The maximum concentration of

S01 is altered significantly with k5 and Ds01 (see the

concentration shown below each 2D plot).

See also Figure S5 and Table S1.
exclusive relationship between S01 and S10, it exhibited a stripe

pattern when it operates in 2D space, where S01 and S10 comple-

mentarily occupied the space with almost identical stripe width

and peak concentration (Figure 6B). When we changed the value

of k3, the critical parameter for the ‘‘outer’’ cycle and hence for

peak width, the spatial pattern in 2D space was greatly affected:

the increase of k3 resulted in the decreased stripe width and

ended up with the fragmented dots of high S01 regions (Fig-

ure 6C). Along the 100-fold change in k3 value, the peak value

of S01 was less affected. On the other hand, changes in k5 and

DS01, parameters responsible for the ‘‘inner’’ cycle, and hence

the peak height had more impact on the peak concentration of

stripe. The 100-fold increase in the k5 value and 100-fold
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decrease in the DS01 value changed the

peak concentration almost 10-fold (Fig-

ures 6D and 6E), while it did not affect

the stripe width much. A similar mecha-

nism of pattern formation is likely to take

place for the parameter sets of cluster 2

(Figure S5).

Breakdown to the Minimal
Requirement for Spatial Pattern
Formation
The remaining cluster 3 had horizontal

reflection symmetry (i.e., the overall

parameter distribution is unchanged by

exchanging the position of S01 and S10)

(Figure 2E). Even when one of the two

mono-phosphorylated substrates was

omitted from the scheme (Figure 7A), the

model with three modification states (i.e.,

S0, S1, and S2) exhibited spatial pattern

formation. A randomparameter search re-

vealed one cluster for the spatial param-

eter set (Figure 7B). Parameter distribution

of the cluster was almost the same as

what was obtained by eliminating one of
the mono-phosphorylated forms from spatial cluster 3 in the

four-modification-state model (cf. Figures 2E and 7C). Therefore,

spatial cluster 3 in the four-state model seems a superimposed

version of two three-state models.

A core feature of design motifs as well as mechanism of

pattern formation found in the four-state model is conserved in

the three-state model: there is a clear reaction bias to produce

the slow-diffusion species (S0) from the fast-diffusion species

(S2). Based on the parameter distribution (Figure 7C), we created

a representative parameter set for this three-state model (Table

S3). A steady-state distribution of substrate concentration and

reaction rates (Figure 7D) indicated that the slow-diffusing

species S0 amplifies its own synthesis via the inflow of the
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Figure 7. Breakdown to the Minimal

Requirement for Spatial Pattern Formation

(A) Three-state reaction scheme.

(B) Workflow to derive the condition for spatial

pattern formation.

(C) Parameter histograms for the spatial parameter

set and schematic representation of spatial

parameter set in three-state model.

(D) Spatial pattern arising from the representative

parameter set for three-statemodel. Concentration

of each substance (top), reaction rate involving

kinase (middle), and phosphatase (bottom) are

plotted for each position. The shaded area corre-

sponds to the S0 peak area. See Table S3 for the

representative parameter values.

(E) Result from stochastic simulation with the

three-state scheme and the total initial number

S = 150,000, E = F = 100. Averaged distribution

(top), overall production rate (middle), and overall

rightward movement (bottom) are shown for each

bin position. Distribution was averaged for 100 min

after the establishment of spatial pattern. In the

same time frame, overall production rate and

overall movements were calculated in the same

manner as in Figure S4A. See Table S4 for the

parameter values.

(F) Schematic expression of the spatial pattern

maintenance. Kinase sequestration by S0 at the

center of the peak and its release at the peripheral

area, and overall absorption of substance in the

form of fast-diffusing S2 are depicted.

(G) Parameter sets that met algebraic conditions

for Turing instability (red) and that produced spatial

patterns in the simulation (blue) are projected on

the same principle component (PC) space.

See also Figure S6 and Tables S3 and S4.
fast-diffusing species S2 (Figure 7E). At the center of S0 peak, the

overwhelming amount of S0 sequestrates the kinase, inhibiting

S1/S2. This makes the overall reaction inclined toward S2/

S1/S0, and S2 concentration tends to be lower. Following this

gradient, fast-diffusing S2 flows into the center of S0 peak that

further stimulates the production of S0 (Figure 7F). Like the
C

case of four-state model, the long-range

negative feedback in the three-state

model can be interpreted as activator-

depleted scheme (Meinhardt, 2008):

slow-diffusing S0 is produced from fast-

diffusing S2 and production rate of S2 at

the center of S0 is suppressed.

An apparent difference in the parameter

distribution between the three-state

model and the four-state model lies in

the binding affinity of substrate and

enzyme. In the four-state model, the

highest substrate-enzyme affinity lies in a

slow-diffusion substrate making the peak

(Figures 2C and 2D). In the three-state

model, S1, the second slowest diffusion

species has the highest affinity with ki-

nase. This represents the restriction of
three-state model; n the three-state model, reproduction of S2

requires kinase-driven phosphorylation of S1. To this end, S1

needs to take back kinase from S0 at some point of reaction

cascade, thus needs to have a high kinase-substrate affinity.

The simplicity of this three-state model enabled an analyt-

ical approach using linear stability analysis (Supplemental
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Experimental Procedures). One requirement for the emergence

of spatial pattern is that the phosphorylation and de-phosphory-

lation of two sites are carried out by the same kinase and phos-

phatase, indicating the importance of enzymatic sequestration

to affect other reaction steps sharing the same enzyme. Further-

more, analytical examination revealed the requirements of the

parameter sets to have a potential to generate spatial patterns

by amplifying small fluctuations in an almost homogeneous 1D

space. The parameter space satisfying such analytic require-

ments are closely overlapped with the parameter space that re-

sulted in spatial pattern formation in numerical simulation,

implying the validity of this analytical approach (Figure 7G).

Unlike clusters 1 and 2, cluster 3 does not have a mutually

exclusive relationship between two species (e.g., S01 and S10

in cluster 1). Therefore, there is no constraint to partition the

2D space for the two antagonizing species. This relaxed

constraint leads to a single peak pattern even in the 2D space.

The width of resultant peak was tunable from a small single

dot to a more blurred concentration gradient (Figure S6).

DISCUSSION

Comparison with Other Mass-Conserved Reaction-
Diffusion Models for Scale-free Pattern Formation
When the total amount of substances is kept constant by

assuming that no de novo synthesis and degradation of compo-

nents happen, the reaction-diffusion system results in the emer-

gence of spatial pattern with single peak in 1D space (Goryachev

and Pokhilko, 2008; Ishihara and Kaneko, 2006; Otsuji et al.,

2007). Under the local positive feedback for peak emergence,

the highest peak consumes the resource more effectively than

lower peaks, further stimulating the growth of the highest peak.

The winner-take-all situation allows only one peak to survive at

steady state in an entire space where the competition of limited

resources effectively occurs. Consistent with the previous

finding (Otsuji et al., 2007), most (>80%) of the spatial parame-

ters found in our random parameter search in 1D space resulted

in the single peak for substrate with a specific modification state.

The single peak pattern, which is resilient to the changes in the

system size, was also observed in a reaction-diffusion system

with a mechanism called wave-pinning (Jilkine and Edelstein-

Keshet, 2011; Mori et al., 2008). In the wave-pinning system,

spatially homogeneous steady state is stable, whereas in the

mass-conserved Turing system, spatially homogeneous steady

state is unstable and an infinitesimally small perturbation to break

the homogeneity leads to the emergence of spatial pattern. The

spatial pattern formation in our model belongs to the mass-

conserved Turing system and not to the wave-pinning system,

because part of our criteria for the screening of spatial para-

meter set requires Turing instability. Nonetheless, it is expected

that the scheme of reversible-multisite phosphorylation can

exhibit wave-pinning mechanism because the scheme is mass-

conserved and can have a bistability (Markevich et al., 2004).

General Model of Pattern Formation by Reversible
Two-Site Phosphorylation
Our study proposes that the reversible two-site modification of a

single substrate by two competing enzymes could be the direct
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source for spatial pattern formation. For example, it was shown

that a two-phosphorylation mitogen-activated protein kinase

(MAPK) signaling forms a focus in a unicellular organism fission

yeast (Dudin et al., 2016). The focalization process is assumed

to involve several feedback pathways including actin stabiliza-

tion, but our model suggests that the reversible phosphorylation

of MAPK itself may play a role to evoke a local accumulation of

the signaling pathway.

A part of ‘‘reaction,’’ ‘‘binding,’’ and ‘‘diffusion’’ motifs can be

found in enzymes/substrates including mitogen-activated pro-

tein kinase kinase (MAPKK) and CKId/ε. These kinases phos-

phorylate substrates at multiple sites following a preferred order,

corresponding to the cyclic bias revealed in our modeling study

(Ferrell and Bhatt, 1997; Flotow et al., 1990; Vanselow et al.,

2006). In these systems, previous studies have suggested that

enzyme sequestration plays an important role to elicit non-linear

responses (Jolley et al., 2012; Markevich et al., 2004). In these

enzymes, the phosphorylation status of the substrate affects

the substrate affinity through a substrate recognition site, whose

interaction with the substrate is dependent on the electrostatic

status of the substrate. The catalytic constant is also affected

because the substrate recognition can define the conformation

of the substrate toward the catalytic pocket and hence deter-

mine its catalytic constant. In this sense, our biochemical model

can naturally accommodate the characteristics of these en-

zymes, which do not have a typical allosteric regulation. Another

specific requirement for the formation of spatial patterns is a

difference in diffusion rates depending on the phosphorylation

state of the substrate. Although the change in molecular weight

by the addition of one or two phosphate groups itself will not alter

the diffusion rate of modified substrate significantly, the diffusion

rate can be dramatically altered by the altered affinity of modified

substrate with scaffold structures such as cytoskeletal proteins,

cell membranes, and chromosomes.

Although our modeling study started without constraints

based on previously identified molecular networks, the overall

mechanism encompasses several key features found in other

specific biological models including sequestration-based direc-

tional flow and mutual exclusion of two key species (Dawes and

Munro, 2011; Halatek and Frey, 2012; Otsuji et al., 2007; Toste-

vin and Howard, 2008). Furthermore, our model can provide a

unified view for the role of protein localization; when the sub-

strate-enzyme complex is localized in the specific area, the

role of localization may be enzyme sequestration for autono-

mous spatial formation rather than only enrichment of enzymatic

activity. Taken together, the simplicity and generality of our

reversible phosphorylation model provides a framework to

investigate a biochemical source of autonomous pattern forma-

tion and ultimately, to synthesize a de novo molecular network

that inherently encodes spatial information.

EXPERIMENTAL PROCEDURES

All the details of equations and simulation processes are presented in Supple-

mental Experimental Procedures.

Modeling the Reversible Phosphorylation with Diffusion Process

The phosphorylation and de-phosphorylation processes were described

as the Michaelis-Menten scheme for enzymatic reaction, consisting of the



binding of enzyme and substrate, the dissociation of enzyme-substrate com-

plex, and the reaction of phosphate transfer/removal. Quasi-steady-state

approximation on the formation of enzyme-substrate complex (i.e., Michae-

lis-Menten approximation) was applied for deterministic simulations.

Random and Biased Parameter Search

For random parameter search, each reaction rate constant (k), Michaelis con-

stant (Km), and diffusion coefficient (D) were randomly chosen from the expo-

nentially distributed parameters within the range of 1–1,000 min–1, 0.01–

1,000 mM, and 0.001–100 mm2 min–1 (1.673 10�5–1.67 mm2 s–1), respectively.

The obtained spatial and oscillatory parameter sets were then clustered

through Ward’s algorithm. The four-state model has a horizontal symmetry

(e.g., exchanging the position of S01 and S10) and a point symmetry (e.g.,

exchanging the role of kinase and phosphatase). A distance matrix between

the parameter sets was made to cancel those inherent symmetries of the

reaction scheme.

For each biased parameter search reflecting one or more of the three design

motifs, randomly generated parameters that satisfied the following constraints

were used for PDE calculation: (1) cyclic reaction motif: k5 < k1 and k4 < k8, (2)

binding motif: Max {Km4, Km5} < Min {Km1, Km2, Km3, Km6, Km7, Km8}, and (3)

biased diffusion motif: Max {DS01, DS10} < Min {DS00, DS11}.

Representative Parameter Set

To analyze the mechanisms of spatial pattern formation from each cluster, a

representative parameter set was created to represent the tendency of the

given cluster’s parameter distribution. For monotonously increasing or

decreasing histogram, its extreme value was adopted. For a histogram with

an apparent single peak value, the peak value was adopted. For the parame-

ters that had no significant tendency, a value around its average was adopted.

Bifurcation Analysis

The representative parameter set (four-statemodel, spatial cluster 1) was used

for the bifurcation analysis shown in Figures 3 and S3. Each parameter was

varied among the indicated range. After the system reaches steady state,

peak and trough of S01 concentration and spatial width between two points

that give half the concentration of S01 peak were calculated.

Stochastic Simulation

The representative parameter sets for clusters 1 and 3 and the representative

parameter set for the three-state model were all converted to the full mass-ac-

tion parameter sets before conducting SSA calculations. For the single-mole-

cule tracking, 150,000 substrate molecules and only one ‘‘tagged’’ substrate

molecule were simulated in a common environment but recorded separately.
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Figure S1. Two-site reversible phosphorylation can generate oscillation, related to Figure 1.
(A) An example of oscillation, showing the concentration of S01 along position and time. Vertical dotted line indicates the spatial 
section at the position of 5 µm shown in (B).
(B) A section of (A) at the position of 5 µm shows the limit cycle oscillation. Concentration of each substrate is plotted along with 
time.
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Figure S3. Bifurcation analysis to find the critical parameter for peak height and width, related to Figure 3.
The bifurcation analyses were conducted as shown in Figure 3E, and all the parameters except for the parameters shown in Figure 
3E are shown in this figure. The symmetrical counterparts of parameters shown in Figure 3E are shown in (A), and the others are 
shown in (B). 
See also Table S1.
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Figure S4. Stochastic simulation, related to Figure 4.
(A) The stochastic simulation was conducted with a parameter set corresponding to the representative parameter set for cluster 1 
(see Table S2). For the final spatial pattern arising in the simulation, averaged distribution (left), overall production rate (middle), 
and overall rightward movements (right) are shown for each bin position. Distribution was averaged for 400 minutes after the 
establishment of spatial pattern. In the same time frame, overall production rate was evaluated by deducing depletion of the 
species of interest from its production, and overall movements were calculated for each bin by deducing leftward movements (from 
the next bin at right to the bin of interest) from the rightward movements (toward the next bin at right from the bin of interest). 
The distribution of enzyme-substrate complexes is explicitly calculated in SSA simulation. As these complexes are converted into 
products at a constant rate, their distributions are proportionate with the reaction rates calculated with PDE (see Figure 3D).
(B) Changing the diffusion rates of enzymes and enzyme-substrate complexes did not qualitatively alter the shape of the spatial 
pattern. Of the parameter values shown in Table S2, the diffusion rates of enzymes and enzyme-substrate complexes were altered 
either to one hundred times (1.667 μm2 sec-1) or to one-hundredth (1.667×10-4 μm2 sec-1) of the original value (0.01667 μm2 sec-1). 
In both cases, distribution of each species was averaged for 100 minutes after the establishment of spatial pattern.
See also Table S2.
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Figure S5. 2D pattern for the cluster 2-represenatative parameter set, related to Figure 6.
(A) Overall mechanism of spatial pattern formation and maintenance with cluster 2-representative parameter set similar to that with 
cluster 1-representative parameter set.
(B) 2D patterns emerged from cluster 2-representative parameter set.
(C-E) Modification of one of the parameter in the cluster 2-representative parameter set. Only the distributions of S11 are shown. 
See also Table S1.
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Figure S6. 2D pattern for the cluster 3-representative parameter set, related to Figure 7.
(A) Cluster 3-representative parameter set exhibits a small dot-shaped pattern, with most of the substance taking form of S00 and 
accumulating in the middle of the simulated area. The scale-independent emergence of single peak might be useful in circumstanc-
es where creating a single signal gradient in cell and subcellular structure is important, for example asymmetric cell division.
(B) Increasing DS00 caused broadening of the single peak, making a smooth gradient.
See also Table S1.



Table S1. Representative parameter sets of the four-component Michaelis-Menten model, related to 
Figures 1, 3, 6, S3, S5, and S6. 
 

Parameter Cluster 1 Cluster 2 Cluster 3 

k1 (min-1) 1000 
30 30 

k2 (min-1) 30 
30 30 

k3 (min-1) 
30 

1000 300 

k4 (min-1) 
30 

3 300 

k5 (min-1) 
30 

3 1000 

k6 (min-1) 
30 

1000 1000 

k7 (min-1) 
30 

30 300 

k8 (min-1) 1000 
30 300 

Km1 (μM) 0.3 
0.01 20 

Km2 (μM) 300 
300 20 

Km3 (μM) 300 
0.3 0.02 

Km4 (μM) 0.01 
300 0.02 

Km5 (μM) 0.01 
300 30 

Km6 (μM) 300 
0.3 30 

Km7 (μM) 300 
300 1000 

Km8 (μM) 0.3 
0.01 1000 

DS00 (μm2 sec-1) 1.667 
5×10-4 1.667×10-5 

DS01 (μm2 sec-1) 5×10-4 
1.667 1.667×10-3 

DS10 (μm2 sec-1) 5×10-4 
1.667 1.667×10-3 

DS11 (μm2 sec-1) 1.667 
5×10-4 1.667 

  



Table S2. Representative parameter sets and collapsed parameter sets of the four-component model, 
related to Figures 4, 5, and S4.  
 

 

   

Parameter Representative 
Reaction 

motif 
collapsed 

Binding 
motif 

collapsed 

Diffusion 
motif 

collapsed 

All motifs 
collapsed 

kb1 (min-1 μM-1) 3367 274 249 3367 22 

kb2 (min-1 μM-1)  0.1333 0.274 9.87  0.1333 22 

kb3 (min-1 μM-1) 0.1333 0.274 9.87 0.1333 22 

kb4 (min-1 μM-1) 4000 8210 9.87 4000 22 

kb5 (min-1 μM-1) 4000 8210 9.87 4000 22 

kb6 (min-1 μM-1) 0.1333 0.274 9.87 0.1333 22 

kb7 (min-1 μM-1) 0.1333 0.274 9.87 0.1333 22 

kb8 (min-1 μM-1) 3367 274 249 3367 22 

kub1-kub8 (min-1) 10 10 10 10 10 

k1 (min-1) 1000 72 1000 1000 72 

k2- k7 (min-1) 30 72 30 30 72 

k8 (min-1) 1000 72 1000 1000 72 

DS00 (μm2 sec-1) 1.667 1.667 1.667 0.02 0.02 

DS01 (μm2 sec-1) 5×10-4 5×10-4 5×10-4 0.02 0.02 

DS10 (μm2 sec-1) 5×10-4 5×10-4 5×10-4 0.02 0.02 

DS11 (μm2 sec-1) 1.667 1.667 1.667 0.02 0.02 

DES0001, DES0010, 
DES0111, DES1011, 
DFS0100, DFS1000, 
DFS1101, DFS1110, 

DE, DF 

(μm2 sec-1) 

0.01667 0.01667 0.01667 0.01667 0.01667 



Table S3. Representative parameter set of the three-component Michaelis-Menten model, related to 
Figure 7. 
 

Parameter Representative 

k1 (min-1) 20 

k2- k4 (min-1) 1000 

Km1 (μM) 16 

Km2 (μM) 0.01 

Km3 (μM) 16 

Km4 (μM) 103 

DS0 (μm2 sec-1) 1.667×10-5 

DS1 (μm2 sec-1) 1.667×10-3 

DS2 (μm2 sec-1) 1.667 

  



Table S4. Representative parameter set of the three-component model converted to the full mass-action 
parameter, related to Figure 7. 
 

Parameter Representative 

kb1 (min-1 μM-1) 1.875 

kb2 (min-1 μM-1) 1.01×105 

kb3 (min-1 μM-1) 63.13 

kb4 (min-1 μM-1) 1.01 

kub1-kub4 (min-1) 10 

k1 (min-1) 20 

k2-k4 (min-1) 103 

DS0 (μm2 sec-1) 1.667×10-5 

DS1 (μm2 sec-1) 1.667×10-3 

DS2 (μm2 sec-1) 1.667 

DES0, DES1, DFS1, DFS2, DE, DF 

(μm2 sec-1) 
0.01667 

 
 



 
SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
Software for computer simulation 
Numerical integration of systems with PDE was carried out by using Mathematica software version 9.0 and 
10.0 (Wolfram Research). Clustering of parameter sets was carried out by R software (The R project). The 
stochastic simulation was carried out by SSA (Gillespie, 1977) implemented in Cain software version 1.9 
(http://cain.sourceforge.net/). 
 
Reaction-diffusion equations for the single-site reversible phosphorylation 
The reaction-diffusion equations for the reversible mono-phosphorylation scheme are described as below. 

𝜕

𝜕𝑡
[𝑆0] = 𝑅S0 + 𝐷S0

𝜕

𝜕𝑥2 [𝑆0],  (1.1) 

𝜕

𝜕𝑡
[𝑆1] = 𝑅S1 + 𝐷S1

𝜕

𝜕𝑥2 [𝑆1], (1.2) 

𝜕

𝜕𝑡
[𝐸] = −𝑅ES0 + 𝐷E

𝜕

𝜕𝑥2 [𝐸], (1.3) 

𝜕

𝜕𝑡
[𝐹] = −𝑅FS1 + 𝐷F

𝜕

𝜕𝑥2 [𝐹], (1.4) 

𝜕

𝜕𝑡
[𝐸𝑆0] = 𝑅ES0 + 𝐷ES0

𝜕

𝜕𝑥2 [𝐸𝑆0], (1.5) 

𝜕

𝜕𝑡
[𝐹𝑆1] = 𝑅FS1 + 𝐷FS1

𝜕

𝜕𝑥2 [𝐹𝑆1], (1.6) 

𝑅S0 = −𝑘𝑏1[𝐸][𝑆0] + 𝑘𝑢𝑏1[𝐸𝑆0] + 𝑘2[𝐹𝑆1], (1.7) 

𝑅S1 = −𝑘𝑏2[𝐹][𝑆1] + 𝑘𝑢𝑏2[𝐹𝑆1] + 𝑘1[𝐸𝑆0], (1.8) 

𝑅ES0 = 𝑘𝑏1[𝐸][𝑆0] − 𝑘𝑢𝑏1[𝐸𝑆0] − 𝑘1[𝐸𝑆0], (1.9) 

𝑅FS1 = 𝑘𝑏2[𝐹][𝑆1] − 𝑘𝑢𝑏2[𝐹𝑆1] − 𝑘2[𝐹𝑆1]. (1.10) 

For any given substance S, Rs stands for the “reaction term” denoting the phosphorylation and de-
phosphorylation reactions. The “diffusion term,” denoting each species’ own free-diffusion process with 
the diffusion coefficient Ds, is described as following; 

𝐷S
𝜕

𝜕𝑥2 [𝑆]. (1.11) 

[S0] and [S1] denote the concentrations of de- and mono-phosphorylated substrate. [E] and [F] denote the 
concentrations of kinase and phosphatase. [ES0] and [FS1] denote the concentrations of the enzyme-
substrate complexes. Mass-action kinetics parameters, kb, kub, and k, stand for the velocity coefficients of 
substrate-enzyme binding, unbinding, and phospho-group transfer. Properties of phosphorylation reactions 
are determined by kb1, kub1, and k1, while de-phosphorylation reactions are described by kb2, kub2, and k2. 

 
Linear stability analysis 
A reaction-diffusion system is said to have Turing instability or diffusion-induced instability when the 
uniform steady state is stable against a spatially homogeneous perturbation and unstable against a 
heterogeneous perturbation. To determine whether a given system can display Turing instability, linear 
stability analysis was conducted on the Jacobian matrix at the uniform steady state. For n-species system, 
the uniform steady state S* = ([S1

*], [S2
*],,, [Sn

*]) was evaluated either by solving Rs = 0 for every chemical 
species, or by running the simulation without the diffusion term until the system converges to S*. Suppose 
that the system resting at S* receives a small perturbation approximated as σm eikx (m = 1, 2,,, n), a sine 
function with wavenumber k ≥ 0 and a small amplitude σm in spatial position x. Then the reaction-diffusion 
equations are reduced to; 

𝟎 = (𝑹 − 𝑘2𝑫 − 𝜆𝑬)𝜮, (2.1) 

where 

𝑹 = {𝑟𝑝𝑞  | 1 ≤ 𝑝 ≤ 𝑛, 1 ≤ 𝑞 ≤ 𝑛, 𝑟𝑝𝑞 =
𝜕

𝜕[𝑆𝑝]
𝑅S𝑞(𝑺∗)}, (2.2) 

𝑫 = {𝑑𝑝𝑞  |1 ≤ 𝑝 ≤ 𝑛, 1 ≤ 𝑞 ≤ 𝑛, 𝑑𝑝𝑞 = 𝛿𝑝𝑞𝐷s𝑝  }. (2.3) 

E is an identity matrix and Σ is a vector with n members denoting a fluctuation from the steady state. Let 
λmax be one of the solutions of the equation below, with the largest value of real part 



|𝑹 − 𝑘2𝑫 − 𝜆𝑬| = 0. (2.4) 

For each k ≥ 0, Re (λmax) represents growth rate of a perturbation of sine-wave shape with wavenumber k. 
Then the condition for Turing instability is as follows; 
Re(𝜆max) < 0 for 𝑘 = 0 and Re(𝜆max) > 0 for some 𝑘 > 0. (2.5) 
 
Absence of Turing instability in the single-site system 
For the single-site reversible phosphorylation scheme described as the equations (1.1)-(1.10), the 
characteristic equation (2.4) becomes a sixth-degree polynomial equation of λ. From Routh-Hurwitz 
criterion (Edelstein-Keshet, 2005), this equation only yields solutions whose real part is negative, regardless 
of the parameter set. From the condition (2.5), possibility of Turing instability in this system is ruled out. 
 
Reaction-diffusion equations for the four-state model 
The four-state model shown in Figure 1A is described as below; 

𝜕

𝜕𝑡
[𝑆00] = 𝑅S00 + 𝐷S00

𝜕

𝜕𝑥2 [𝑆00], (3.1) 

𝜕

𝜕𝑡
[𝑆01] = 𝑅S01 + 𝐷S01

𝜕

𝜕𝑥2 [𝑆01], (3.2) 

𝜕

𝜕𝑡
[𝑆10] = 𝑅S10 + 𝐷S10

𝜕

𝜕𝑥2 [𝑆10], (3.3) 

𝜕

𝜕𝑡
[𝑆11] = 𝑅S11 + 𝐷S11

𝜕

𝜕𝑥2 [𝑆11], (3.4) 

𝜕

𝜕𝑡
[𝐸] = −𝑅ES0001−𝑅ES0010−𝑅ES0111−𝑅ES1011 + 𝐷E

𝜕

𝜕𝑥2 [𝐸], (3.5) 

𝜕

𝜕𝑡
[𝐹] = −𝑅FS0100−𝑅FS1000−𝑅FS1101−𝑅FS1110 + 𝐷F

𝜕

𝜕𝑥2 [𝐹], (3.6) 

𝜕

𝜕𝑡
[𝐸𝑆0001] = 𝑅ES0001 + 𝐷ES0001

𝜕

𝜕𝑥2 [𝐸𝑆0001], (3.7) 

𝜕

𝜕𝑡
[𝐸𝑆0010] = 𝑅ES0010 + 𝐷ES0010

𝜕

𝜕𝑥2 [𝐸𝑆0010], (3.8) 

𝜕

𝜕𝑡
[𝐸𝑆0111] = 𝑅ES0111 + 𝐷ES0111

𝜕

𝜕𝑥2 [𝐸𝑆0111], (3.9) 

𝜕

𝜕𝑡
[𝐸𝑆1011] = 𝑅ES1011 + 𝐷ES1011

𝜕

𝜕𝑥2 [𝐸𝑆1011], (3.10) 

𝜕

𝜕𝑡
[𝐹𝑆0100] = 𝑅FS0100 + 𝐷FS0100

𝜕

𝜕𝑥2 [𝐹𝑆0100], (3.11) 

𝜕

𝜕𝑡
[𝐹𝑆1000] = 𝑅FS1000 + 𝐷FS1000

𝜕

𝜕𝑥2 [𝐹𝑆1000], (3.12) 

𝜕

𝜕𝑡
[𝐹𝑆1101] = 𝑅FS1101 + 𝐷FS1101

𝜕

𝜕𝑥2 [𝐹𝑆1101], (3.13) 

𝜕

𝜕𝑡
[𝐹𝑆1110] = 𝑅FS1110 + 𝐷FS1110

𝜕

𝜕𝑥2 [𝐹𝑆1110], (3.14) 

𝑅S00 = −(𝑘𝑏1 + 𝑘𝑏2)[𝐸][𝑆00] + 𝑘𝑢𝑏1[𝐸𝑆0001] + 𝑘𝑢𝑏2[𝐸𝑆0010] + 𝑘5[𝐹𝑆0100] + 𝑘6[𝐹𝑆1000], 

 (3.15) 

𝑅S01 = −𝑘𝑏3[𝐸][𝑆01] − 𝑘𝑏5[𝐹][𝑆01] + 𝑘𝑢𝑏3[𝐸𝑆0111] + 𝑘𝑢𝑏5[𝐹𝑆0100] + 𝑘1[𝐸𝑆0001] + 𝑘7[𝐹𝑆1101], 

(3.16) 

𝑅S10 = −𝑘𝑏4[𝐸][𝑆10] − 𝑘𝑏6[𝐹][𝑆10] + 𝑘𝑢𝑏4[𝐸𝑆1011] + 𝑘𝑢𝑏6[𝐹𝑆1000] + 𝑘2[𝐸𝑆0010] + 𝑘8[𝐹𝑆1110], 

(3.17) 

𝑅S11 = −(𝑘𝑏7 + 𝑘𝑏8)[𝐹][𝑆11] + 𝑘𝑢𝑏7[𝐹𝑆1101] + 𝑘𝑢𝑏8[𝐹𝑆1110] + 𝑘3[𝐸𝑆0111] + 𝑘4[𝐸𝑆1011], 

(3.18) 

𝑅ES0001 = 𝑘𝑏1[𝐸][𝑆00] − 𝑘𝑢𝑏1[𝐸𝑆0001] − 𝑘1[𝐸𝑆0001], (3.19) 

𝑅ES0010 = 𝑘𝑏2[𝐸][𝑆00] − 𝑘𝑢𝑏2[𝐸𝑆0010] − 𝑘2[𝐸𝑆0010], (3.20) 

𝑅ES0111 = 𝑘𝑏3[𝐸][𝑆01] − 𝑘𝑢𝑏3[𝐸𝑆0111] − 𝑘3[𝐸𝑆0111], (3.21) 

𝑅ES1011 = 𝑘𝑏4[𝐸][𝑆10] − 𝑘𝑢𝑏4[𝐸𝑆1011] − 𝑘4[𝐸𝑆1011], (3.22) 

𝑅FS0100 = 𝑘𝑏5[𝐹][𝑆01] − 𝑘𝑢𝑏5[𝐹𝑆0100] − 𝑘5[𝐹𝑆0100], (3.23) 



𝑅FS1000 = 𝑘𝑏6[𝐹][𝑆10] − 𝑘𝑢𝑏6[𝐹𝑆1000] − 𝑘6[𝐹𝑆1000], (3.24) 

𝑅FS1101 = 𝑘𝑏7[𝐹][𝑆11] − 𝑘𝑢𝑏7[𝐹𝑆1101] − 𝑘7[𝐹𝑆1101], (3.25) 

𝑅FS1110 = 𝑘𝑏8[𝐹][𝑆11] − 𝑘𝑢𝑏8[𝐹𝑆1110] − 𝑘8[𝐹𝑆1110]. (3.26) 

For the massive random parameter search, Michaelis-Menten approximation was applied to 
reduce the number of variables. It assumes the enzyme-substrate binding and unbinding as having reached 
equilibrium, and reduces the set of reaction rate parameters {kb, kub, k} into {Km, k}. Km is called Michaelis 
constant given by 

𝐾𝑚 =  
 𝑘𝑢𝑏+𝑘

𝑘𝑏
. (3.27) 

In the Michaelis-Menten -approximated version, the entire system is described by four equations, 
exchanging the reaction terms of (3.1)-(3.4) to the following; 

𝑅S00 = − (
𝑘1

𝐾𝑚1
+

𝑘2

𝐾𝑚2
) [𝐸][𝑆00] + (

𝑘5

𝐾𝑚5
[𝑆01] +

𝑘6

𝐾𝑚6
[𝑆10]) [𝐹], (3.28) 

𝑅S01 = (
𝑘1

𝐾𝑚1
[𝑆00] −

𝑘3

𝐾𝑚3
[𝑆01]) [𝐸] + (−

𝑘5

𝐾𝑚5
[𝑆01] +

𝑘7

𝐾𝑚7
[𝑆11]) [𝐹], (3.29) 

𝑅S10 = (
𝑘2

𝐾𝑚2
[𝑆00] −

𝑘4

𝐾𝑚4
[𝑆10]) [𝐸] + (−

𝑘6

𝐾𝑚6
[𝑆10] +

𝑘8

𝐾𝑚8
[𝑆11]) [𝐹], (3.30) 

𝑅S11 = (
𝑘3

𝐾𝑚3
[𝑆01] +

𝑘4

𝐾𝑚4
[𝑆10]) [𝐸] − (

𝑘7

𝐾𝑚7
+

𝑘8

𝐾𝑚8
) [𝐹][𝑆11], (3.31) 

[𝐸] =
[𝐸tot]

1+
[𝑆00]

𝐾𝑚1
+

[𝑆00]

𝐾𝑚2
+

[𝑆01]

𝐾𝑚3
+

[𝑆10]

𝐾𝑚4

, (3.32) 

[𝐹] =
[𝐹tot]

1+
[𝑆01]

𝐾𝑚5
+

[𝑆10]

𝐾𝑚6
+

[𝑆11]

𝐾𝑚7
+

[𝑆11]

𝐾𝑚8

. (3.33) 

In our model, the total amount of enzymes are [Etot] = [Ftot] = 1 μM and total amount of substrate was 1,500 
μM unless otherwise indicated. 
 
Random parameter search in the four-state model 
The random parameter search in this paper aimed to find Turing instability-based spatial pattern formation 
and spatially homogeneous oscillation from reversible two-site phosphorylation. The 1D system size was 
set to 10 µm with a periodic boundary condition. Spatial pattern is defined by three criteria; 1) Turing 
instability, 2) temporal stability (i.e. temporal change of any species’ concentration throughout a certain 
time is sufficiently small), and 3) spatial heterogeneity (at least one species shows a significant variance in 
its concentration distribution). Oscillation is characterized by two criteria; 4) temporal cyclicity, and 5) 
spatial homogeneity (i.e. spatial variance of any species’ concentration throughout the simulated space is 
sufficiently small) of the chemical concentration. 

For the four-state model, the following two steps were conducted to reduce calculation time. 
First, for each parameter set, a system without D was simulated under ordinary differential equations 
(ODEs). In the initial state, all the substrate exists as non-phosphorylated form (S00) with the concentration 
of 1,500 µM. Kinase and phosphatase exist at the concentration of 1 µM. All the other substances have zero 
initial values. For each parameter set, calculation was continued at least until t = 1,000 min and at most 
until t = 3 × 108 min. Parameter sets that showed either oscillatory behaviors or Turing instability were then 
allowed to proceed to the second step. The other parameter sets, converging to Turing-stable uniform steady 
state, or failing to converge within the calculation limit, were discarded. The concrete criteria of oscillation 
and Turing instability are as follows. For oscillation, the temporal trajectory of any of the simulated species 
must cross the same value three times. The two parts of trajectories sectioned by those three crossing points 
must display a high similarity with correlation coefficient greater than 0.99, and the peak amplitude of the 
two trajectories must not differ by greater than 1%. For Turing instability, the system must have converged 
to a steady state, and the determinant equation of Jacobian matrix at the steady state must have at least one 
solution with positive real part (see Linear stability analysis). This satisfies the criterion 1). 

The second step uses the PDE with both reaction and diffusion term, and calculates the evolution 
of the system both along time and space. The initial condition of the PDE simulation was set as the final 
state of the ODE, hence mostly the same as the steady state of ODE. 0.1% fluctuation was added to the 
concentration of S00 for each spatial position. To prevent the memory from expiring, each simulation was 
split into several epochs with duration T. The first epoch has T = 2,500 min. Each epoch was extended to 
twice the duration of the previous epoch if the previous epoch was calculated without errors (e.g. probably 
the parameter set was near a bifurcation point and the behavior of the system was too stiff). If there was an 
error in the previous epoch, the same epoch was re-calculated with the duration shortened to half the 
duration of the previous epoch. If the error did not resolve even when the epoch size reaches T = 100 min 
or shorter, then the simulation was discarded. 

The presence of stable spatial pattern is judged according to the following steps. As criterion 1) 



is already established in the first step, the second step aims to establish criteria 2) and 3). After calculating 
each epoch, the concentration difference of two time points, T and 0.99T, were evaluated at each position 
for each species. If the maximum of the concentration difference was less than 0.01 μM, then the simulation 
result was judged as having reached the equilibrium and met criterion 2). Then, for each of S00, S01, S10, 
and S11, the difference between its maximum and minimum concentration was calculated. If the largest one 
of the four values, named Cmax, satisfies Cmax > 100 μM then it was judged as having met criterion 3), hence 
the presence of stable spatial pattern. For oscillation, the time evolution at an arbitrary position in the space 
(in our simulation, x = 2.5 μm) must meet the same criteria as in the first step and be therefore considered 
as having met criterion 4). The system must also meet criterion 5) with Cmax < 0.01 μM. 

 
Clustering with collapsed symmetry 
We used Ward’s algorithm when clustering the spatial and oscillatory parameter sets. The distance matrices 
for the clustering were made with a metric to cancel out the inherent symmetries of the reaction scheme. 
The four-state model has a horizontal symmetry (e.g. exchanging the position of S01 and S10 conserves the 
overall structure) and a point-symmetry (e.g. exchanging the role of kinase and phosphatase conserves the 
overall structure). The distance between the two parameter sets P1 and P2 is defined as the minimum of the 
distances between P1 and the four symmetrical images of P2 – Min {P1P2, P1P3, P1P4, P1P5} – where P3 and 
P4 are the horizontal and point-symmetrical transpositions, and P5 is the combination of the two 
transpositions. P3 is defined by transposing the parameters of P2 as k1 ↔ k2, k3 ↔ k4, k5 ↔ k6, k7 ↔ k8, Km1 
↔ Km2, Km3 ↔ Km4, Km5 ↔ Km6, Km7 ↔ Km8, and DS01 ↔ DS10. P4 is defined by converting the parameters 
of P2 as k1 ↔ k8, k2 ↔ k7, k3 ↔ k6, k4 ↔ k5, Km1 ↔ Km8, Km2 ↔ Km7, Km3 ↔ Km6, Km4 ↔ Km5, DS00 ↔ DS11, 
and DS01 ↔ DS10. The combination of two transpositions, P5, is defined by the product of the above two 
steps. The order of the two transpositions does not affect the result, both being same as k1 ↔ k7, k2 ↔ k8, k3 
↔ k5, k4 ↔ k6, Km1 ↔ Km7, Km2 ↔ Km8, Km3 ↔ Km5, Km4 ↔ Km6, and DS00 ↔ DS11.  
 
Stochastic simulation 
In Gillespie algorithm (Gillespie, 1977), two random numbers are generated for each iteration step; the first 
is to determine when the next process takes place, and the second is to determine what the process will be. 
Each random number is generated from a set of probability density functions that reflect the number of 
possible next processes and their ratio. In this study, the 1D spatial range (0-10 μM) with a periodic 
boundary condition was split into 100 identical bins. It is assumed that each bin is homogeneous and 
exchanges substances with the neighboring bins with a defined set of diffusion coefficients. By assuming 
diffusion as conversion process of a species in one bin into a species in the neighboring bins, diffusion can 
be treated in the same way as reaction. 

For the simulations, the representative parameter sets in Michaelis-Menten-approximated 
version were converted to full mass-action parameter sets by fixing kub = 10 min-1 and solving the equation 
(3.27). The set of two parameters {Km, k} was thus converted to the three parameters {kub, kb, k} for each 
reaction. For the diffusion term, enzymes and enzyme-substrate complexes were all given the value of 1 
µm2min-1 (0.01667 µm2sec-1). See Table S2 for the values. 
 
Analysis of spatial pattern formation in the three-state model 
When we consider kinase/phosphatase actions in two-site phosphorylation, we can choose from random or 
ordered models. The random model corresponds to the four-state model, while the ordered model 
corresponds to the three-state model. Although the ordered three-state model applies a strict constraint on 
the action of enzymes, it is mathematically simpler than the random model. On the other hand, the random 
four-state model is a biochemically more relaxed form and thus a more general model of two-site reversible 
modification. The three-state model with progressive two-site phosphorylation and the shared kinase and 
phosphatase is described as the equations below; 

𝜕

𝜕𝑡
[𝑆0] = 𝑅S0 + 𝐷S0

𝜕

𝜕𝑥2 [𝑆0], (4.1) 

𝜕

𝜕𝑡
[𝑆1] = 𝑅S1 + 𝐷S1

𝜕

𝜕𝑥2 [𝑆1], (4.2) 

𝜕

𝜕𝑡
[𝑆2] = 𝑅S2 + 𝐷S2

𝜕

𝜕𝑥2 [𝑆2], (4.3) 

𝜕

𝜕𝑡
[𝐸] = −𝑅ES0−𝑅ES1 + 𝐷E

𝜕

𝜕𝑥2 [𝐸], (4.4) 

𝜕

𝜕𝑡
[𝐹] = −𝑅FS1−𝑅FS2 + 𝐷F

𝜕

𝜕𝑥2 [𝐹], (4.5) 

𝜕

𝜕𝑡
[𝐸𝑆0] = 𝑅ES0 + 𝐷ES0

𝜕

𝜕𝑥2 [𝐸𝑆0], (4.6) 

𝜕

𝜕𝑡
[𝐸𝑆1] = 𝑅ES1 + 𝐷ES1

𝜕

𝜕𝑥2 [𝐸𝑆1], (4.7) 

𝜕

𝜕𝑡
[𝐹𝑆1] = 𝑅FS1 + 𝐷FS1

𝜕

𝜕𝑥2 [𝐹𝑆1], (4.8) 

𝜕

𝜕𝑡
[𝐹𝑆2] = 𝑅FS2 + 𝐷FS2

𝜕

𝜕𝑥2 [𝐹𝑆2], (4.9) 



𝑅S0 = −𝑘𝑏1[𝐸][𝑆0] + 𝑘𝑢𝑏1[𝐸𝑆0] + 𝑘3[𝐹𝑆1], (4.10) 

𝑅S1 = −𝑘𝑏3[𝐹][𝑆1] + 𝑘𝑢𝑏3[𝐹𝑆1] + 𝑘1[𝐸𝑆0]−𝑘𝑏2[𝐸][𝑆1] + 𝑘𝑢𝑏2[𝐸𝑆1] + 𝑘4[𝐹𝑆2], (4.11) 

𝑅S2 = −𝑘𝑏4[𝐹][𝑆2] + 𝑘𝑢𝑏4[𝐹𝑆2] + 𝑘2[𝐸𝑆1], (4.12) 

𝑅ES0 = 𝑘𝑏1[𝐸][𝑆0] − 𝑘𝑢𝑏1[𝐸𝑆0] − 𝑘1[𝐸𝑆0], (4.13) 

𝑅ES1 = 𝑘𝑏2[𝐸][𝑆1] − 𝑘𝑢𝑏2[𝐸𝑆1] − 𝑘2[𝐸𝑆1], (4.14) 

𝑅FS1 = 𝑘𝑏3[𝐹][𝑆1] − 𝑘𝑢𝑏3[𝐹𝑆1] − 𝑘3[𝐹𝑆1], (4.15) 

𝑅FS2 = 𝑘𝑏4[𝐹][𝑆2] − 𝑘𝑢𝑏4[𝐹𝑆2] − 𝑘4[𝐹𝑆2]. (4.16) 

The names of the species and the indices of reaction parameters in the equations correspond to the ones in 
Figure 7A. The above set of nine PDEs was used in the stochastic simulation. With Michaelis-Menten 
approximation, the entire system is written by three variables for S0, S1, and S2, exchanging the reaction 
terms of (4.1)-(4.3) to the following; 

𝑅S0 = −
𝑘1

𝐾𝑚1
[𝐸][𝑆0] +

𝑘3

𝐾𝑚3
[𝐹][𝑆1], (4.17) 

𝑅S1 = (
𝑘1

𝐾𝑚1
[𝑆0] −

𝑘2

𝐾𝑚2
[𝑆1]) [𝐸] + (

𝑘4

𝐾𝑚4
[𝑆2] −

𝑘3

𝐾𝑚3
[𝑆1]) [𝐹], (4.18) 

𝑅S2 =
𝑘2

𝐾𝑚2
[𝐸][𝑆1] −

𝑘4

𝐾𝑚4
[𝐹][𝑆2], (4.19) 

where 

[𝐸] =
[𝐸tot]

1+
[𝑆0]

𝐾𝑚1
+

[𝑆1]

𝐾𝑚2

, (4.20) 

[𝐹] =
[𝐹tot]

1+
[𝑆1]

𝐾𝑚3
+

[𝑆2]

𝐾𝑚4

. (4.21) 

In the random parameter search with the three-state model, the same range for reaction rate 
constants (k), Michaelis constants (Km), and diffusion coefficients (D) were used as with the four-state 
model. In the initial state, all the substrate exists as non-phosphorylated form (S0) with the concentration of 
1,500 µM. The kinase and phosphatase exist at the concentration of 1 µM. All the other substances have 
zero initial values. Each simulation for a given parameter set was composed of a sequence of epochs with 
the duration of T = 10,000 min. The calculation was continued at least for 1 epoch and at most for 20 epochs. 
If the result of simulation of an epoch met the following two conditions, it was determined that the 
simulation reached a stable spatial pattern; first, standard deviation of spatial distribution of at least one 
species’ concentration must exceed 100 μM at the end of the epoch. Second, standard deviation of the 
temporal change of every species’ concentration throughout the epoch must not exceed 0.1 μM at two points 
(x = 0 and x = 0.23). 

 
Absence of Turing pattern in the two-site reversible phosphorylation model without enzyme sharing 
With Michaelis-Menten approximation, it was shown that Turing pattern could never occur from the four-
state scheme without enzyme sharing (i.e. all the reactions are carried out by different enzymes). The 
reaction-diffusion equations of the four-state model without enzyme sharing are described as below instead 
of (3.28) through (3.33); 

𝑅S00 = −
𝑘1

𝐾𝑚1+[𝑆00]
[𝐸tot1][𝑆00] −

𝑘2

𝐾𝑚2+[𝑆00]
[𝐸tot2][𝑆00] +

𝑘5

𝐾𝑚5+[𝑆01]
[𝐹tot1][𝑆01] +

𝑘6

𝐾𝑚6+[𝑆10]
[𝐹tot2][𝑆10], 

(5.1) 

𝑅S01 =
𝑘1

𝐾𝑚1+[𝑆00]
[𝐸tot1][𝑆00] −

𝑘3

𝐾𝑚3+[𝑆01]
[𝐸tot3][𝑆01] −

𝑘5

𝐾𝑚5+[𝑆01]
[𝐹tot1][𝑆01] +

𝑘7

𝐾𝑚7+[𝑆01]
[𝐹tot3][𝑆11], 

(5.2) 

𝑅S10 =
𝑘2

𝐾𝑚2+[𝑆00]
[𝐸tot2][𝑆00] −

𝑘4

𝐾𝑚4+[𝑆10]
[𝐸tot4][𝑆10] −

𝑘6

𝐾𝑚6+[𝑆10]
[𝐹tot2][𝑆10] +

𝑘8

𝐾𝑚8+[𝑆10]
[𝐹tot4][𝑆11], 

(5.3) 

𝑅S11 =
𝑘3

𝐾𝑚3+[𝑆01]
[𝐸tot3][𝑆01] +

𝑘4

𝐾𝑚4+[𝑆10]
[𝐸tot4][𝑆10] −

𝑘7

𝐾𝑚7+[𝑆11]
[𝐹tot3][𝑆11] −

𝑘8

𝐾𝑚8+[𝑆11]
[𝐹tot4][𝑆11]. 

(5.4) 

For this set of equations, possibility of Turing instability was algebraically ruled out with any combination 



of reaction parameters and total amounts of enzymes; all the Routh-Hurwitz coefficients are positive with 
no change of signs. Possibility of Turing instability in the three-state model without enzyme sharing was 
also ruled out by setting k2 = k4 = k6 = k8 = 0. For the three-state model, we attempted the same analysis for 
all possible patterns of enzyme sharing, using Routh-Hurwitz criterion. It was shown that Turing pattern is 
possible when two phosphorylating reactions share the kinase, or when two de-phosphorylating reactions 
share the phosphatase, or when the both are satisfied at the same time; in all the other cases, spatial pattern 
emergence was ruled out. The results of analyses in Michaelis-Menten-approximated schemes are not 
directly applicable to the full mass-action scheme, especially where the fundamental premise for the 
approximation fails (e.g. where the total amount of enzymes and substrates are at the similar order). We did 
not conduct the same analysis on the full mass-action scheme, as it became unfeasible within our limit of 
computation power. 
 
Algebraic condition for Turing instability in the three-state model with shared kinase and 
phosphatase 
In the case of three-state reversible phosphorylation scheme with a shared kinase and a shared phosphatase, 
the value of each rpq in definition (2.2) are as follows; 

𝑟11 = −
𝑘1𝐾𝑚1𝐾𝑚2[𝐸tot](𝐾𝑚2+[𝑆1

∗])

(𝐾𝑚1𝐾𝑚2+𝐾𝑚2[𝑆0
∗]+𝐾𝑚1[𝑆1

∗])
2 < 0, (6.1) 

𝑟12 =
𝑘3𝐾𝑚3𝐾𝑚4[𝐹tot](𝐾𝑚2[𝑆0

∗]+𝐾𝑚1(𝐾𝑚2+[𝑆1
∗]))

2
(𝐾𝑚4+[𝑆2

∗])+𝑘1𝐾𝑚1𝐾𝑚2[𝐸tot][𝑆0
∗](𝐾𝑚4[𝑆1

∗]+𝐾𝑚3(𝐾𝑚4+[𝑆2
∗]))2

(𝐾𝑚2[𝑆0
∗]+𝐾𝑚1(𝐾𝑚2+[𝑆1

∗]))2(𝐾𝑚4[𝑆1
∗]+𝐾𝑚3(𝐾𝑚4+[𝑆2

∗]))2 > 0, 

(6.2) 

𝑟13 = −
𝑘3𝐾𝑚3𝐾𝑚4[Ftot][𝑆1

∗]

(𝐾𝑚4[𝑆1
∗]+𝐾𝑚3(𝐾𝑚4+[𝑆2

∗]))
2 < 0, (6.3) 

𝑟31 = −
𝑘2𝐾𝑚1𝐾𝑚2[𝐸tot][𝑆1

∗]

(𝐾𝑚2[𝑆0
∗]+𝐾𝑚1(𝐾𝑚2+[𝑆1

∗]))
2 < 0, (6.4) 

𝑟32 =
𝑘4𝐾𝑚3𝐾𝑚4[𝐹tot][𝑆2

∗](𝐾𝑚2[𝑆0
∗]+𝐾𝑚1(𝐾𝑚2+[𝑆1

∗]))2+𝑘2𝐾𝑚1𝐾𝑚2[𝐸tot](𝐾𝑚1+[𝑆0
∗])(𝐾𝑚4[𝑆1

∗]+𝐾𝑚3(𝐾𝑚4+[𝑆2
∗]))2

(𝐾𝑚2[𝑆0
∗]+𝐾𝑚1(𝐾𝑚2+[𝑆1

∗]))2(𝐾𝑚4[𝑆1
∗]+𝐾𝑚3(𝐾𝑚4+[𝑆2

∗]))2 > 0, 

(6.5) 

𝑟33 = −
𝑘4𝐾𝑚3𝐾𝑚4[𝐹tot](𝐾𝑚3+[𝑆1

∗])

(𝐾𝑚4[𝑆1
∗]+𝐾𝑚3(𝐾𝑚4+[𝑆2

∗]))
2 < 0. (6.6) 

The Jacobian matrix can be rewritten using positive numbers, 

𝐹11 = −𝑟11, 𝐹12 = 𝑟12, 𝐹13 = −𝑟13, 𝐹31 = −𝑟31, 𝐹32 = 𝑟32, 𝐹33 = −𝑟33, (6.7) 

Then, 

𝑹 − 𝑘2𝑫 − 𝜆𝑬 = 

(

−𝐹11 − 𝐷S0 ∗ 𝑘2 − 𝜆 𝐹12 −𝐹13

𝐹11 + 𝐹31 −𝐹12 − 𝐹32 − 𝐷S1 ∗ 𝑘2 − 𝜆 𝐹33 + 𝐹13

−𝐹31 𝐹32 −𝐹33 − 𝐷S2 ∗ 𝑘2 − 𝜆

) (6.8) 

Then (2.4) becomes: 

𝑎0𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3 = 0, (6.9) 

where 

𝑎0 = −1 < 0, (6.10) 

𝑎1 = 𝑘2(−𝐷S0 − 𝐷S1 − 𝐷S2) − 𝐹11 − 𝐹12 − 𝐹32 − 𝐹33 < 0, (6.11) 

𝑎2 = 𝑘4(−𝐷S0𝐷S1 − 𝐷S1𝐷S2 − 𝐷S0𝐷S2) + 𝑘2(−𝐷S2(𝐹11 + 𝐹12 + 𝐹32) − 𝐷S1(𝐹11 + 𝐹33) − 𝐷S0(𝐹12 +
𝐹32 + 𝐹33)) + 𝐹12𝐹31 + 𝐹13𝐹31 + 𝐹13𝐹32 − 𝐹11𝐹32 − 𝐹11𝐹33 − 𝐹12𝐹33, (6.12) 

𝑎3=𝑘2(−𝑘4𝐷S0𝐷S1𝐷S2 − 𝑘2(𝐷S0𝐷S2(𝐹12 + 𝐹32) + 𝐷S1(𝐷S2𝐹11 + 𝐷S0𝐹33)) + 𝐷S0(𝐹13𝐹32 − 𝐹12𝐹33) +
𝐷S1(𝐹13𝐹31 − 𝐹11𝐹33) + 𝐷S2(𝐹12𝐹31 − 𝐹11𝐹32)).  (6.13) 

As the first step for solving the analytic condition (2.5) for the system to have Turing instability, 
the condition for stability at k = 0 is investigated. Since a3 becomes zero for k = 0, equation (6.9) becomes 



𝜆(𝑎0𝜆2 + 𝑎1𝜆 + 𝑎2) = 0, (6.14) 

where λ = 0 is a trivial solution arising from mass-conservation. Its corresponding eigenvector points to the 
direction that all the substance increases at the same time, breaching the mass-conservation itself. This is 
biochemically meaningless and is omitted from consideration. The equation (6.14) is then reduced to; 

𝑎0𝜆2 + 𝑎1𝜆 + 𝑎2 = 0. (6.15) 

For both of the two solutions of this equation to have negative real parts, a2 < 0 (k = 0) must be met. This 
is equivalent to; 

𝐹12𝐹31 + 𝐹13𝐹31 + 𝐹13𝐹32 − 𝐹11𝐹32 − 𝐹11𝐹33 − 𝐹12𝐹33 < 0. (6.16) 

Next, the condition for instability for some k > 0 is investigated. From Routh-Hurwitz criterion, 
the signs of the 4 Routh-Hurwitz coefficients must not be the same. These coefficients are a0, a1, a3 and b1, 
which is written as 

𝑏1 = 𝑎2 −
𝑎0𝑎3

𝑎1
. (6.17) 

Substitution of equation (6.17) by k, DS0, DS1, DS2, F11, F12, F13, F31, F32, and F33 yields a polynomial with 
only negative coefficients. This proves that b1 is always negative. Combined with equations (6.10) and 
(6.11), indicating that both a0 and a1 are negative, Turing instability can be made possible only when a3 > 
0. We investigated the condition to satisfy 

𝑎3
′ = 𝑎3/𝑘2 = −𝑘4𝐷S0𝐷S1𝐷S2 − 𝑘2(𝐷S0𝐷S2(𝐹12 + 𝐹32) + 𝐷S1(𝐷S2𝐹11 + 𝐷S0𝐹33)) + 𝐷S0(𝐹13𝐹32 −

𝐹12𝐹33) + 𝐷S1(𝐹13𝐹31 − 𝐹11𝐹33) + 𝐷S2(𝐹12𝐹31 − 𝐹11𝐹32) > 0. (6.18) 

The coefficients of k2 and k4 are both negative, making a3
’ monotonically decrease. Therefore, the only case 

we have to consider in the periodic boundary condition for the spatial range is k = 2π. 
From the above analysis, a given parameter set must satisfy all the conditions in the following 

steps in order to result in a spatial pattern formation, all of which can be checked algebraically; 
(1) Evaluate S* = ([S0

*], [S1
*], [S2

*]) by solving the zero point of reaction terms of reaction-diffusion 
equations. In the three-state model with Michaelis-Menten approximation, this yields a cubic equation 
and thus algebraically solvable. From S*, extract the solutions that are within a chemically possible 
range (i.e. real and positive). This yields either one or three different solutions. 

(2) Ensure that S* is a stable steady state without diffusion. This can be done by solving |R - λE| = 0 and 
checking that Re (λmax) < 0. If S* is unstable, it must be omitted from the later analysis. 

(3) For k = 2π, if any of the following two tautologous conditions are met, then the given parameter set 
would result in a spatial pattern: i) a3 > 0, or ii) Re (λmax) > 0 where λ is given by solving a cubic 
equation |R – k2D - λE| = 0. 

 
A detailed analysis on the pattern formation in two-dimensional space for cluster 2 and 3 
Though the cluster 1 and 2 are highly similar with 90-degree rotation of the reaction scheme (see Figure 
2C and 2D) and similar regulation of pattern shape in 2D space was observed with the representative 
parameter set for cluster 2, they are not exactly the same. For example, the peak height is resilient against 
the changes in one parameter responsible for the “inner” cycle in cluster 2 (i.e. k7). The difference can be 
attributed to the different parameter topology between cluster 1 and 2 because these clusters are not 
perfectly symmetric: for example, in the cluster 1, high affinity between S01 and phosphatase promotes the 
reaction S01 → S00 that counteracts the overall clockwise bias in the reaction rate. On the other hand, in the 
cluster 2, high affinity between S00 and kinase promoters the reaction from S00 → S01 that supports the 
overall clockwise reaction bias. 

 In the following explanation, the parameters of cluster 2 are compared with those of cluster 1 
with clockwise 90-degree rotation – for example, S00 of cluster 1 is compared with S01 of cluster 2 and k1 
of cluster 1 is compared with k3 of cluster 2. With the representative parameter set of cluster 1, the onset of 
the “inner cycle” (i.e. S01 → S00) is mediated by phosphatase, while the onset of the “outer cycle” (i.e. S01 
→ S11) is mediated by kinase. S01 can thus proceed either to the “inner” cycle or the “outer” cycle at a 
similar order of reaction rate. On the other hand, with cluster 2-representative parameter set, the two 
possible reactions for S11 (i.e. S11 → S01 and S11 → S10) are both catalyzed by phosphatase. The direction 
in which S11 proceeds is determined by the ratio of Km7 and Km8. As Km8 is overwhelmingly smaller than 
Km7, S11 predominantly proceeds to the “outer cycle.” Thus, k8 in cluster 2, the first component of the “outer” 
cycle, plays a much more crucial role to the maintenance of spatial pattern than k3 in cluster 1 does. A small 
alteration of k8 significantly changes the pattern width; only 18% decrease results in an S11-dominant pattern 
and 22% increase produces an S00-dominant pattern (Figure S5C). The heavy dependence to the “outer” 
cycle makes the pattern collapse easily with only 20% decrease or 30% increase (Figure S5C). On the other 
hand, k7 in cluster 2, the first component of the “inner” cycle, does not contribute so much to the 



maintenance of spatial pattern formation as k5 does in cluster 1, thus altering k7 has little effect on the pattern 
shape (Figure S5D). As diffusion process is independent from the chemical reaction, alteration of DS11 
produced mostly the same result as altering DS01 in cluster 1 (Figure S5E); decrease of DS11 resulted in 
higher peaks with a narrower pitch, while its increase produced an opposite effect with lower peaks with a 
wider pitch. 

With the representative parameter of cluster 3, almost all the substances accumulate at the single 
position in the form of S00. Increasing DS00, the diffusion rate of the accumulating species, resulted in a 
wider peak with a lower peak value (Figure S6A and B). 
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