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Identifying the stages of sleep, or sleep staging, is an unavoidable step in sleep research and

typically requires visual inspection of electroencephalography (EEG) and electromyography

(EMG) data. Currently, scoring is slow, biased and prone to error by humans and thus is the

most important bottleneck for large-scale sleep research in animals. We have developed an

unsupervised, fully automated sleep staging method for mice that allows less subjective and

high-throughput evaluation of sleep. Fully Automated Sleep sTaging method via EEG/EMG

Recordings (FASTER) is based on nonparametric density estimation clustering of comprehen-

sive EEG/EMG power spectra. FASTER can accurately identify sleep patterns in mice that

have been perturbed by drugs or by genetic modification of a clock gene. The overall accu-

racy is over 90% in every group. 24-h data are staged by a laptop computer in 10 min, which

is faster than an experienced human rater. Dramatically improving the sleep staging process in

both quality and throughput FASTER will open the door to quantitative and comprehensive

animal sleep research.

Introduction

Ever since the discovery of sleep/wake status rela-
tionship to electroencephalography (EEG) in the early
20th century, sleep staging based on EEG has been
the standard method to evaluate sleep/wake status in
animals. In mice, states of consciousness are classified
into at least three stages: nonrapid eye movement
sleep (NREM sleep), rapid eye movement sleep
(REM sleep) and wake. Determination of an animal’s
sleep/wake stage is based on visual inspection of EEG
and electromyography (EMG) of the animal by well-
trained human raters with some or no computational
support. The classical sleep scoring criteria for mice

use the amplitude of selected frequency bands of
EEG and EMG (Fig. 1A). NREM sleep is character-
ized by large and slow EEG waves with low EMG
amplitude, REM sleep has lower and faster EEG with
very low EMG amplitude, and wake has an EEG pat-
tern similar to REM sleep with very high amplitude
of EMG.

There are two problems scoring sleep/wake stages
by visual inspection: quality control and throughput.
Scoring sleep stages depends on human rater bias and
will differ between two human raters (inter-rater vari-
ance) and a human rater analyzing the same data mul-
tiple times (intrarater variance). The main reason why
visual inspection by a human rater is still used for sleep
staging is related to the fundamental difficulty of sleep
staging in drawing boundaries between different
stages. There are many factors causing this difficulty,
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such as the differences between individual animals, the
noise of EEG/EMG recording device and variance in
surgical techniques used in electrode implantation that
can make the definition of rigid boundaries problem-
atic. Visual inspection aims to compensate for these
sources of variance in the EEG/EMG data, sacrificing
objectivity in favor of the human brain’s pattern-find-
ing abilities. The other problem with sleep staging
based on visual inspection is low throughput. Visual
inspection of long-term EEG/EMG data is time-con-
suming and tedious. Even an experienced human rater
requires hours to score 24 h of mouse sleep data. This

makes it difficult to carry out quantitative and com-
prehensive sleep research in animals and is hindering
sleep biology from becoming a truly data-driven field.

To overcome these problems, many types of sleep
staging programs have been developed since the
1960s (Drane et al. 1969; Larsen & Walter 1970;
Smith & Karacan 1971; Martin et al. 1972; Kohn
et al. 1974; Winson 1976). These methods can be
divided into two processes: character extraction and
sleep staging.

Character extraction identifies features from EEG/
EMG to discriminate sleep stages. Along with the
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Figure 1 (A) Representative EEG and EMG time-domain data during 8 s of NREM sleep, REM sleep and wake status. NREM

sleep is characterized by high-amplitude EEG delta waves (0.5–4 Hz) with low EMG power, REM sleep is characterized by low-

amplitude, high-frequency EEG theta waves (6–10 Hz) with very low EMG power, and wake is characterized by high and varying

EMG power. (B) An overview of FASTER, the unsupervised fully automated sleep staging. (1) Each epoch’s power spectrum of

both the EEG and EMG is calculated by FFT. EEG/EMG power spectra are transformed into values of principal components by

principle component analysis (PCA), and the values of top four principle components are used for further analysis. (2) Epochs are

clustered by the nonparametric density estimation clustering using the principal components. This clustering method estimates the

probability density of the dataset and defines a cluster as a high-density area that is connected by Delaunay triangulation. The

number of the clusters is automatically calculated by the method. (3) The clusters are annotated according to the median logarithm

of EMG power and EEG delta power of each cluster (middle panel). Histograms around the middle panel represent the relative

counts of each sleep/wake stage by the logarithm of EMG power (upper histogram in the middle panel) and the logarithm of

EEG delta power (left histogram in the middle panel). In this representative case, cluster 1 is first annotated as ‘wake’ by the med-

ian logarithm of EMG power. Then, the remaining clusters are annotated as ‘NREM sleep’ and ‘REM sleep’ by the median loga-

rithm of EEG delta power. The final staging is shown in the right panel.
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development of automated sleep staging programs,
efforts have been made to identify the proper fea-
tures for extraction. Many automated staging pro-
grams use specific bands of the EEG power
spectrum as features (Johns et al. 1977; Chouvet
et al. 1980; Van Luijtelaar & Coenen 1984; Stanus
et al. 1987; Mamelak et al. 1988; Benington et al.
1994; Berthomier et al. 2007; Kohtoh et al. 2008;
Brankack et al. 2010; Gilmour et al. 2010; Vural &
Yildiz 2010; Pan et al. 2012). The most common
power spectra bands in rodents are referred to as
delta (0.5–4 Hz), theta (6–10 Hz) and sigma (10–
15 Hz). Other characters have also been proposed,
including information that is harder for humans to
intuitively interpret. These include coefficients of
wavelet analysis (Ebrahimi et al. 2008; Gabran et al.
2008; Sinha 2008; Fraiwan et al. 2010, 2011; Garces
Correa & Laciar Leber 2010; Agrawal et al. 2011),
bispectral density (Acharya et al. 2010; Swarnkar
et al. 2010), parameters of multichannel autoregres-
sive modeling (Zhovna & Shallom 2008) and match-
ing pursuit method with slow wave patterns (Picot
et al. 2011). Recently, two groups have proposed
using a broader range of the EEG spectrum, more
finely binned than the three classical bands, and
reported higher-quality sleep stage classification
(Vivaldi & Bassi 2006; Rytk€onen et al. 2011). No
matter what kind of staging methods are used, the
number of features passed to the sleep staging step is
usually important for performance. Some groups
have achieved reduction of feature dimension with-
out losing critical information using principal com-
ponent analysis (Vivaldi & Bassi 2006; Gilmour et al.
2010) or support vector machine-based recursive fea-
ture elimination (Koley & Dey 2012).

The features abstracted from the raw dataset are
then used for scoring sleep stages. Automated staging
programs can be divided into two groups according
to their annotation methods: unsupervised and
supervised. Unsupervised staging programs use ‘hard’
rules to annotate the data. Such rules are defined
before the staging process. Therefore, unsupervised
staging programs do not use rules based on specific
data derived from each subject. This makes the
results reproducible, but sensitive to data outside the
anticipated input range. However, supervised staging
programs, which have recently become a popular
approach, use ‘soft’ rules for annotation. They learn
the proper decision rules based on a training dataset
of each subject and then analyze the remaining data
of the subject. This makes the staging program resil-
ient to irregular data because the training dataset

includes uncommon characters from the original
data. However, a human rater should annotate the
training dataset for each subject, which introduces
subjectivity.

Classically, automated sleep staging programs were
based on unsupervised algorithms (Larsen & Walter
1970; Smith & Karacan 1971; Martin et al. 1972;
Kohn et al. 1974; Winson 1976; Johns et al. 1977;
Mendelson et al. 1980; Van Luijtelaar & Coenen
1984; Kuwahara et al. 1988; Neckelmann et al. 1994;
Doman et al. 1995; Veasey et al. 2000; Kohtoh et al.
2008). Since the late 1980s, supervised sleep staging
programs incorporating sophisticated machine learn-
ing algorithms have become more popular, due to
their ability to improve the accuracy of staging by
including the variances between subject animals. The
machine learning algorithms include neural networks
(Mamelak et al. 1991; Robert et al. 1996, 1997;
Schaltenbrand et al. 1996; Baumgart-Schmitt et al.
1997; Gr€ozinger & R€oschke 2002; Ebrahimi et al.
2008; Gabran et al. 2008; Hassaan & Morsy 2008;
Sinha 2008; Garces Correa & Laciar Leber 2010;
Fraiwan et al. 2011), support vector machines (Crisler
et al. 2008; Koley & Dey 2012), training hidden
Markov models (Grube et al. 2002; Pan et al. 2012)
and parameter estimation of Gaussian mixture models
(Acharya et al. 2010).

Although many of the supervised sleep staging
programs have improved the throughput of sleep
staging because only small amount of manual staging
is required, subjectivity still remains as a problem.
These methods let the machine ‘learn’ the desired
sleep stage recognition rules from the dataset of
EEG/EMG tagged with sleep/wake status scored by
‘human’ experts. Sleep staging by a human rater or
by supervised programs can absorb many kinds of
variance in the EEG/EMG data although it sacrifices
the objectivity because of inter- or inner-rater differ-
ences. Therefore, an automated sleep staging program
that can fully substitute manual scoring requires mini-
mization of subjectiveness due to inter- and inner-
rater differences and maximization of robustness
against many sources of variability inherited in EEG/
EMG data. The past automated sleep staging pro-
grams have either of four major problems in this
aspect.

The first problem is related to subjectiveness.
Modern automated sleep staging programs are often
tied with machine learning algorithms using ‘soft’
rules, which requires supervision by a human rater.
They are very robust against variance, but subjective
in nature. To solve this subjectiveness problem, we
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adopted the classical unsupervised approach using
‘hard’ rules, which is objective in principle.

The second problem is related to robustness, one
of the weaknesses in unsupervised algorithms. Most
of the automated sleep staging programs, either super-
vised or unsupervised, attempt to stage each ‘epoch’
of EEG/EMG data, which has the minimal time
length, typically 4–10 s, for staging sleep. It is not
very difficult to stage an epoch that has typical wave-
form for a specific stage. The toughest cases are when
the epoch has borderline characteristics of multiple
stages because the borderline between multiple stages
is very variable and therefore hard to determine. To
solve this ‘borderline’ problem, we adopted the strat-
egy introduced by Gilmour et al. (Gilmour et al.
2010). In this strategy, epochs are first clustered into
a limited number of groups and then annotated based
on the statistical value of each group. This ‘cluster-
first’ strategy divides the borderline problem into two
parts, clustering and annotation, and makes the anno-
tation much easier and more robust because the bor-
derline cases are already clustered into a group that
has similar characters if the clustering algorithm is
appropriate. Therefore, this ‘cluster-first’ strategy can
convert the difficult classification problem in staging
of borderline cases into the clustering problem. This
conversion is beneficial because we can use recently
developed sophisticated algorithms for clustering.

The third problem is also related to robustness,
especially involved in clustering. Many automated
sleep staging programs adopt model-based algorithms
in clustering or classification. Model-based algorithms
work well when the model is known a priori. When
the system steps out from the model, characters that
are extracted through the false model are useless. To
solve this problem, we adopted a model-free cluster-
ing algorithm which is based on nonparametric den-
sity estimation (Azzalini & Torelli 2007).

The remaining forth problem is involved in char-
acter extraction and again related to robustness of
sleep staging. Many automated sleep staging pro-
grams use limited power bands of EEG/EMG for
sleep staging. They may cause problems because
mouse inbred strains are known to have different
distributions of EEG power bands (Franken et al.
1998). As mentioned above, some groups reported
that the broader range of the EEG spectrum with
finer bin than the three classical band contains useful
information for sleep staging (Vivaldi & Bassi 2006;
Rytk€onen et al. 2011). Thus, we used comprehen-
sive EEG/EMG power spectra with the finest bin
the recorder may take. We expected that a wider

range and finer bin of EEG/EMG power spectra
might cover the individual variance of the subject.
The use of broader and finer EEG/EMG power
spectra increases the dimension of the data, which
consumes the computation power and takes longer
time for sleep staging. To reduce the dimension of
data, we therefore performed principle component
analysis of EEG/EMG power spectra in the character
extraction step.

In this study, we combined solutions to all of the
four problems and developed an unsupervised fully
automated sleep staging program, FASTER (Fully
Automated Sleep sTaging method via EEG/EMG
Recordings). All efforts were made to minimize sub-
jectivity and increase robustness against many sources
of variance accompanying to the EEG/EMG data.
FASTER was first developed by using the EEG/
EMG data from wild-type mice and then tested for
mice with drug-induced alterations in sleep/wake
patterns or arrhythmic genetic modifications in a
clock gene. The source code of FASTER is open
source (GNU General Public License) and available
for future improvement in the sleep research field.

Results

Basic structure of the FASTER algorithm

FASTER is composed of three major steps, character
extraction, clustering and annotation (Fig. 1B). In the
character extraction step (Fig. 1B, top panels), both
EEG and EMG time-domain data are first split into
epochs with constant time length of 8 s. This EEG/
EMG time-domain data are next converted by fast
Fourier transform (FFT) into frequency-domain data,
the EEG/EMG power spectra. We used the power
up to the maximum frequency, called Nyquist fre-
quency (i.e., half of the sampling frequency), which
corresponds to 50 Hz in this study because EEG/
EMG data were recorded at 100 Hz. Characters of
EEG/EMG power spectra are then extracted by prin-
cipal component analysis (PCA). In the following
clustering step (Fig. 1B, middle panels), all epochs are
grouped together into a limited number of clusters
according to the characters of EEG/EMG power
spectra obtained in the character extraction step. We
used the nonparametric density estimation clustering
method (Azzalini & Torelli 2007) to cluster the
epochs. This method uses two pieces of information
for clustering. First, it estimates a probability density
for each epoch by a Gaussian kernel method. Second,
all epochs are connected by Delaunay triangulation,
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which is a method to triangulate a set of points (i.e.,
epochs in this study) under the criteria that the cir-
cumcircle does not include any other points. Once
the information is calculated, the clusters are defined
by finding subsets of high-density regions that are
connected by Delaunay triangulation. Because the
nonparametric density estimation clustering method
itself selects the number of clusters, it is powerful to
cluster certain datasets without a priori model or with-
out information on the number of clusters. In this
study, the model-free clustering was proper because
we wanted to keep the clustering as objective as pos-
sible. In the final annotation step (Fig. 1B, bottom
panels), each cluster is annotated without supervision
by a human rater according to the statistical value of
characteristics for each cluster. In this study, we use
relative differences in the median logarithm of EMG
power and EEG delta power of each cluster. Overall,
all steps were fully automated and unsupervised.

Optimization of FASTER

To optimize the parameters for hard rules in the
FASTER algorithm, we first prepared an EEG/EMG
dataset with manual annotation of sleep/wake stages.
We recorded continuous EEG/EMG data for 6 days
from four C57BL/6J mice and manually scored into
three stages (NREM sleep, REM sleep and wake)
according to the criteria described in the Experimen-
tal Procedures section. These annotated data were
then used to determine the optimal parameter values
for the FASTER algorithm by assessing its perfor-
mance and computation time for different values of
parameters.

Parameter values for the FASTER algorithm were
optimized in three steps: character extraction, cluster-
ing and annotation. First, we optimized a parameter
value for character extraction. Because the optimal
degree of information extracted from EEG/EMG
power spectrum is not immediately known, we opti-
mized the number of principal components in char-
acter extraction to achieve higher performance with
less computation time for sleep staging. Second, we
optimized parameter values for clustering. The devel-
opers of nonparametric density estimation clustering
supply a recommended shrinkage factor for the
smoothing bandwidth and the optimal number of
grids for the given dataset size (Azzalini & Torelli
2007). However, the clustering results are heavily
dependent on the smoothing factor (bandwidth of
the density estimation kernel) and the grid width of
cluster core search. Therefore, the parameter values

for smoothing factor and the grid width of cluster
search were optimized by assessing both performance
and computation time. Finally, we optimized the
parameter values for annotation. As discussed above,
many unsupervised staging programs use a certain
threshold to classify (or annotate) each epoch into
different sleep stages. However, FASTER annotates
each cluster, not an epoch, by using two statistical
values of each cluster: the median logarithm of EMG
power and EEG delta power. We thus calculated
optimal values for these parameters in annotation. In
the following sections, we describe the detailed pro-
cedures to determine the optimal parameter values
for FASTER.

Optimization of character extraction: the number

of principal components

The parameter optimized in the character extraction
step is the number of principle components passed to
the subsequent steps. In this study, the top four prin-
cipal components are sufficient to express over 38.4%
of the original EEG/EMG power spectrum’s variance
(Fig. S1 in Supporting Information). However, the
optimal number of components to adopt in the sub-
sequent steps is not immediately obvious. Therefore,
we compared the performance of staging results and
computation time with different principal component
numbers (PCN). When PCN is in the range of 2–6,
the accuracy, sensitivity of NREM sleep and wake
and specificity of all three stages reach to near-
plateau, especially when PCN is greater than 4.
Meanwhile, computation time exponentially increases
along the increase in PCN. However, the sensitivity
of REM sleep showed a peak at PCN = 4. Accord-
ing to these results (Fig. 2A), PCN = 4 was chosen
as an optimal number of principal components.

Optimization of clustering: the smoothing factor

of density estimation

The clustering algorithm first estimates the probability
density from the EEG/EMG dataset. Therefore, we
first optimized the smoothing factor, which is a criti-
cal parameter in probability density estimation. A
Gaussian kernel method is used for the nonparametric
density estimation in the clustering step. Estimating
the probability density of a dataset is like rescaling
and smoothing the dataset. When the dataset x has N
points of d dimensional data and the Gaussian kernel
which has a bandwidth h, the estimated probability
density f̂ ðyÞ is given by:
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Figure 2 Optimization of parameter values in the character extraction and clustering steps. The panels show computation time,

accuracy, sensitivity and specificity for each stage (from left). In the sensitivity and specificity panel, red, green and blue dots

denote NREM sleep, REM sleep and wake, respectively. The points are mean and the shaded area denotes standard error of the

mean. Every optimization is carried out using 5400 epochs randomly sampled from the 6-day-length dataset of four C57BL/6J

mice. (A) Optimization of the number of principal components PCN in the character extraction step. While fixing hmult = 0.85

and Ngrid = 135 as arbitrary initial values, FASTER was tested in PCN from 2 to 6. Each PCN was evaluated four times for four

different mice, resulting in 16 tests. PCN = 4 was selected for the optimal value because nearly all of the performances (e.g., accu-

racy, sensitivity of REM sleep) peaked at PCN = 4. (B) Optimization of the smoothing factor hmult of probability density estima-

tion in the clustering step. Fixing the Ngrid = 135 and PCN = 4 as arbitrary initial values, the performance of FASTER was tested

in hmult from 0.6 to 1.0 by 0.05. Each hmult was evaluated twelve times for four different mice, resulting in 48 tests. The computa-

tion time, accuracy and the specificity did not differ among different hmult. Because the sensitivity of REM sleep peaked at

hmult = 0.7 and the other two stages did not have change within this range, hmult = 0.7 was selected as an optimal value. (B) Opti-

mization of the grids numbers Ngrid for cluster detection in the clustering step. While fixing hmult = 0.85 and PCN = 4 as arbitrary

initial values, FASTER was tested in Ngrid from 33 to 1080. Each Ngrid was evaluated twelve times for four different mice, result-

ing in 48 tests. Accuracy, sensitivity and specificity all reached near-plateau and keep increasing slightly when Ngrid is 540 or

greater. For an optimal number of grids, 540 was chosen for this data length. If there is enough computation power, picking Ngrid

for the same number of the dataset will be the best choice because theoretically it should provide the best results.
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Azzalini and Torelli observed that shrinking h
slightly toward zero is often advantageous and recom-
mend the shrinkage factor hmult of 0.75 (Azzalini &
Torelli 2007). Because the number of cluster that can
be detected is heavily dependent on smoothness of
the estimated probability density, we optimized hmult

to improve the accuracy of the staging results
(Fig. 2B). The smaller the bandwidth is, the shaggier
the estimated probability density would be. Especially
when hmult is smaller than 0.4, the number of the
clusters, which are the number of peaks in the esti-
mated probability density, did not match with the
number of the detected saddle points (usually,
the number of peaks and saddles matches). Therefore,
the clustering program was not able to complete
(Fig. S2 in Supporting Information). If the bandwidth
is too large, the cluster number will decrease and
detected clusters might not be sufficient to adequately
describe the dataset. We have chosen the optimal
hmult as 0.70 because the accuracy was constantly high
through the range of 0.60 < hmult < 0.85 and the
sensitivity of REM sleep was highest at hmult = 0.70,
whereas sensitivity of NREM sleep and wake did not
change much in this range (Fig. 2B).

Optimization of clustering: the grid numbers for

cluster detection

After the calculation of estimated probability density
as described above, the clustering algorithm then
searches for cluster cores in the estimated probability
density. Therefore, the second optimized parameter
in the clustering step is the number of grids Ngrid,
which is a critical parameter in the detection of clus-
ter cores. Supposed the dataset has N points in total,
the clustering algorithm scans every N/Ngrid points in
the dataset from the point of maximum probability
density (Fig. S3 in Supporting Information). Theoret-
ically, scanning every point in the dataset (i.e.,
Ngrid = N) will maximize the capability in detecting
cluster cores although it also costs the maximum

computation power. Practically, sufficiently large
number of Ngrid grids will give acceptable results.
Therefore, we optimized Ngrid as smaller as possible
by maximizing performance of sleep staging along
with minimizing the computation time (Fig. 2C).
The accuracy gets nearly constant when Ngrid is larger
than 135, as well as the sensitivities of NREM sleep
and wake. Meanwhile, REM sleep does not reach to
plateau unless Ngrid is greater than 540. Considering
its performance and computation time, we chose 540
as the optimal Ngrid. Because the total points in the
dataset were 5400 in this optimization, this grid num-
ber denotes that the probability density is scanned
through every 10 points. This is finer than the origi-
nal clustering method, which uses default Ngrid of 50
for any size of the data which has more than 50 data
points (Azzalini et al. 2012).

Optimization of annotation

The annotation step in FASTER involves assigning
the proper sleep/wake stages to the limited number
of clusters. Sleep stages can be characterized by rela-
tive difference in EMG power and EEG delta power.
If each cluster is mainly made of the same stage, the
median logarithm of EMG power and EEG delta
power are sufficient to discriminate sleep/wake stages.
Therefore, we adopted the method to annotate the
clusters by their statistical values (i.e., median loga-
rithm of EMG power and EEG delta power). The
advantage of this approach is that we do not need to
care about the borderline epochs; at least the cluster
is guaranteed to have mostly epochs with the identi-
cal stage. If the median logarithm of EMG power of
a cluster is larger than the PEMG quartile of the total
EMG power, the cluster is annotated as ‘wake’. The
remaining clusters are annotated as ‘NREM sleep’ if
the median logarithm of EEG delta power of the
cluster is greater than Pdelta quartile of the nonwake
epochs and as ‘REM sleep’ when it is not. We com-
pared the accuracy of staging results for different
PEMG and Pdelta (Fig. 3A). For annotating ‘wake’ and
‘nonwake’ status, the accuracy was maximized when
0.45 < PEMG < 0.70. For annotating ‘NREM sleep’
and ‘REM sleep’, the accuracy was maximized when
0.05 < Pdelta < 0.45. In this study, we chose 0.5 for
PEMG and 0.1 for Pdelta because these values give the
maximum accuracy when we used these values for
nonclustered epochs (Fig. 3B).

Overall, we optimized FASTER for the number
of principal components to pass to subsequent proce-
dures, the smoothing factor for probability density
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Figure 3 Optimization of parameter values in the annotation step. In the sensitivity and specificity panel, red, green and blue dots

denote NREM sleep, REM sleep and wake, respectively. The points and the shaded area in the three right columns denote mean

and standard error of the mean, respectively. Every optimization is carried out using 5400 epochs randomly sampled from the

6-day-length dataset of four C57BL/6J mice. (A) The left panel shows a schematic view of the relationship between median loga-

rithm of EMG power and EEG delta power and quartile of logarithm of EMG power (PEMG) and nonwake epochs’ EEG delta

power (Pdelta). Each dot represents different clusters. In this case, there are five clusters. The upper row of the right panels shows

results of the annotation when PEMG is tested from 0.05 to 0.95 by 0.05 and the Pdelta is fixed to 0.1. The lower row of the right

panels shows results of annotation when Pdelta is tested from 0.05 to 0.95 by 0.05 and the PEMG is fixed to 0.5. Each PEMG and

Pdelta was evaluated twelve times for four different mice, resulting in 48 tests. The accuracy was maximized when Pdelta is from

0.45 to 0.70 and Pdelta is from 0.10 to 0.45, respectively. (B) Each dot in the left panel represents different epochs before cluster-

ing. The upper row of the right panels shows results of annotation when PEMG is tested from 0.05 to 0.95 by 0.05 and the Pdelta
is fixed to 0.1. The lower row of the right panels shows results of annotation when Pdelta is tested from 0.05 to 0.95 by 0.05 and

the PEMG is fixed to 0.5. Each PEMG and Pdelta had evaluated 12 times for four different mice, resulting in 48 tests. The accuracy

was maximized when PEMG is 0.5 and Pdelta is 0.10, respectively. We chose this number because this value gave optimal results in

the annotation of the clustered dataset (see (A)).
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estimation, the number of grids to seek the cluster
peaks and the thresholds for annotation. Because
these optimizations were carried out in parallel, every
optimized parameter was combined to evaluate the
maximal functionality of the FASTER algorithm, and
the analysis was redone in C57BL/6J male mice that
were used for optimization. These animals were
recorded in a 12-h light/dark condition for 3 days,
followed by a constant darkness for 3 days (Fig. 4A).
The first PC has larger vector elements in the EMG
than in the EEG (upper row of Fig. 4B and Fig. S4A
in Supporting Information). The second, third and
forth PCs have relatively smaller elements in EMG
and unique distribution of elements in EEG (the
lower three rows of Fig. 4B and Fig. S4A in Sup-
porting Information). Using these principal compo-
nents, FASTER divided the epochs into three sleep/
wake stages (Fig. 4C, D and Fig. S4A in Supporting
Information) and the accuracy was 94.6 � 1.4%, the
sensitivity and specificity for each stage were
96.2 � 1.7% and 95.6 � 3.1%, 87.1 � 3.3% and
97.8 � 1.1%, 94.2 � 3.3% and 99.2 � 0.3% for
each NREM, REM and wake status, respectively

(Table 1 and Table S1 in Supporting Information).
The average time spent to analyze a 24 h of mouse
data was 605.7 � 13.9 s using a laptop computer
with a single processor. One of the features in wild-
type animals is that they exhibit their circadian sleep/
wake rhythm, even in constant darkness. They have a
robust internal time, which is called circadian time in
this study. Figure 4E shows that FASTER was able
to detect the NREM sleep time difference in the
subjective day and night under constant darkness con-
dition. The high accuracy suggests combining in-par-
allel optimization worked well in FASTER.

Staging drug-induced overwaking and

oversleeping mice with FASTER

Because our final goal is to evaluate animals with
unnatural sleep/wake status by FASTER, we tested
our method on animals with drug-induced sleep/
wake status. In other words, this examines the robust-
ness of FASTER when the sleep/wake ratio has
changed temporally in a certain period of the experi-
ment. First, we examined prolonged wakefulness by
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respectively. (A) Experimental scheme. (B) Eigenvectors of the top four principal components. (C) Scatter plot of the first two
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Both in manual and in FASTER staging, mean NREM sleep time in subjective day and night was significantly different

(P = 0.0012 and P = 0.0012 for manual staging and FASTER by the unpaired Student’s t-test).
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injecting modafinil into the intraperitoneal cavity to
induce wakefulness through dopaminergic transporter
inhibition (Qu et al. 2008). During EEG/EMG
recording, we injected modafinil intraperitoneally to
mice at the beginning of the light phase (Fig. 5A)
when mice have tendency to sleep. After manually
staging the data (8-day-length, n = 3), we compared
the staging results derived from FASTER (Fig. S4B
in Supporting Information). The increase in wake
induced by modafinil injection was detected both in
manual staging and in FASTER (Fig. 5B). The total
accuracy was 91.9 � 2.5% and the sensitivity and
specificity for each stage were 96.6 � 1.5% and
90.9 � 4.0%, 60.5 � 13.3% and 98.7 � 0.2%,
92.2 � 2.2% and 98.1 � 0.8% for each NREM,
REM and wake status, respectively (mean � SD, 8-
day-length, n = 3, Table 1 and Table S1 in Support-
ing Information). Next, we examined prolonged
sleepiness by using diphenhydramine, which is a his-
tamine H1 receptor antagonist. Diphenhydramine
causes sleep by blocking the wakefulness maintenance
pathway of histamine (Saitou et al. 1999). Under
EEG/EMG recording, we injected diphenhydramine
intraperitoneally to mice at the beginning of the dark
phase, which is the active phase for nocturnal animals
(Fig. 5C). After manual staging (8-day-length, n = 3),
the results were compared with FASTER-derived
stages (Fig. S4C in Supporting Information). The
increase in NREM sleep time after diphenhydramine
injection was clearly detected by both manual staging
and FASTER (Fig. 5D). The accuracy for these mice
was 93.2 � 1.0% and the sensitivity and specificity
for each stage were 96.1 � 1.8% and 93.7 � 0.6%,
71.7 � 6.1% and 98.2 � 0.2%, 92.8 � 0.8% and
98.4 � 1.5% for each NREM, REM and wake
status, respectively (mean � SD, 8-day-length, n = 3,
Table 1 and Table S1 in Supporting Information).
These experiments show that FASTER is capable of
detecting not only normally distributed sleep/
wake status but also temporarily altered sleep/wake
status.

The EEG/EMG recording data of six C57BL/6J
mice obtained in these overwaking or oversleeping
drug administration experiments can be also used for
the validation of FASTER in wild-type mice at nor-
mal condition. One-day-length of EEG/EMG
recordings during the previous day of drug adminis-
tration that was recorded for control were evaluated
for this purpose. Because each mouse had two
chances of administration (vehicle vs. overwaking
drug, or vehicle vs. oversleeping drug), total length
of 2 days were used for the test per animal. In theseT
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mice, the total accuracy was 92.5 � 1.3% and the
sensitivity and specificity for each stage were
95.4 � 1.2% and 93.6 � 2.6%, 66.5 � 10.1% and
98.5 � 0.5%, 93.2 � 1.2% and 98.6 � 1.0% for
each NREM, REM and wake status, respectively
(mean � SD, 2-day-length, n = 6). Taken together,

these results confirm that FASTER is able to detect
sleep/wake stages accurately in wild-type animals, in
either normal or drug-administrated conditions, with-
out human assistance. These results are much objec-
tive and the time spent for staging is faster in
comparison with manual staging by human raters.
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Figure 5 Results of performance test of FASTER in various conditions. (A) Experimental scheme of staging modafinil induced

prolonged wakefulness in C57BL/6J mice with FASTER. (B) The total wake time for three hours after the IP. Both in manual

and in FASTER staging, it was possible to detect significantly longer mean wake time in the modafinil-administered group

(P = 0.016 and P = 0.018 for manual staging and FASTER by the unpaired Student’s t-test.). (C) Experimental scheme of staging

diphenhydramine-induced prolonged sleepiness in C57BL/6J mice with FASTER. (D) The total NREM time for six hours after

the IP. Both in manual and in FASTER staging, it was possible to detect longer NREM time in the diphenhydramine-adminis-

tered group (P = 0.016 and P = 0.0064 for manual staging and FASTER by the unpaired Student’s t-test.). (E) Experimental

scheme of staging genetically modified circadian mutant Bmal1�/� mice with FASTER. (F) The total NREM time during subjec-

tive day and night during 3 days under constant darkness. Both in manual and in FASTER staging, it was unable to detect signifi-

cant difference in NREM time between subjective day and night (P = 0.77 and P = 0.42 for manual staging and FASTER by the

unpaired Student’s t-test.).
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Staging genetically modified animals with

FASTER

One of the motivations behind FASTER is to
increase the throughput of sleep staging, for example,
to screen a large number of genetically modified mice
for defects in sleep. As a proof of principle, we exam-
ined a genetically modified strain with severe circa-
dian abnormalities – mice that lack circadian rhythm
in their sleep/wake behavior. Testing FASTER in
these arrhythmic mice will evaluate the robustness of
this method against genetically modified mice with
sleep/wake phenotypes. We used Bmal1�/� mice,
which are known to exhibit an arrhythmic sleep/
wake pattern (Laposky et al. 2005). EEG/EMG from
three male Bmal1�/� mice was recorded while they
were kept in 12-h light/dark condition for the first
3 days followed by another 3 days under constant
darkness (Fig. 5E). Manual staging and results
obtained by FASTER were compared (Fig. S4D in
Supporting Information). FASTER showed no signif-
icant difference in NREM sleep time between sub-
jective day and night in Bmal1�/� mice during the
constant darkness condition (Fig. 5F), which is one
of the major characteristics found in mice lacking cir-
cadian clock. This arrhythmic phenotype is markedly
different from the circadian sleep/wake pattern in
wild-type mice under the constant darkness condition
(Fig. 4E). The total accuracy in Bmal1�/� mice was
92.6 � 1.1%. Taken together, our results show that
FASTER can reliably detect unnatural sleep/wake
durations and distributions in both drug- and geneti-
cally perturbed animals, which are key factors for
screening mice with sleep/wake abnormalities.

Discussion

We have developed FASTER, an unsupervised fully
automated sleep staging method for mice. This
method reports sleep/wake stages by analyzing the
comprehensive power spectrum of EEG and EMG.
Although there are other semi-automated staging
programs, no system has achieved a fully automated
sleep staging functionality. FASTER is not only fully
automated, but the accuracy is comparable to the
semi-automated staging programs and it is much fas-
ter than manual staging by visual inspection.

The basic strategy of FASTER is to use the classical
‘hard’ rule, which is objective but prone to variance
within subjects. To adopt the classical hard rule, we
have deliberately divided the ‘classification’ into ‘clus-
tering’ and ‘annotation’. The FASTER algorithm

thereby absorbs the individual variance as much as pos-
sible in the character extraction and clustering steps to
safely adopt the classical ‘hard’ rule in annotation step.
For example, in the character extraction step, FAS-
TER uses comprehensive EEG/EMG power instead
of band-specific powers (e.g., EEG delta power),
which is often used in many manual and automated
stagers. The use of comprehensive EEG/EMG power
could cover and hence absorb the individual variance
among subjects. This ‘full power spectrum’ strategy is
based on the report on the interstrain variance in dis-
tribution of classical power bands (Franken et al.
1998), as well as other reports on that expanded bands
beyond the classical ones are informative for staging
accuracy (Vivaldi & Bassi 2006; Rytk€onen et al. 2011).
In this aspect, two improvements might be possible in
the future to further cover and absorb the variance
among subjects. First, using faster sampling to gather
higher powers as characters might detect intersubject
variance. In the current study, we have used 100-Hz
sampling for EEG/EMG recordings that limits the
available power bands of both signals up to the
Nyquist frequency, 50 Hz. Because some eigenvectors
of the principal components include large elements in
the high end of the power spectrum (e.g., see the third
eigenvector in Fig. 4B), higher-frequency powers
might have useful information for sleep staging. Sec-
ond, information on the transition of states might
absorb variance among subjects. In FASTER, the
order of the epochs does not affect the staging results.
When human raters stage the time series of EEG/
EMG, it is natural to take information on the previous
epochs (e.g., REM sleep tends to occur after NREM
sleep, but not after wake stage). Therefore, it will be
an important future work to take the order informa-
tion into account in the character extraction step.

In the clustering step, we have adopted the cluster-
ing algorithm based on nonparametric estimation of
probability density (Azzalini & Torelli 2007) to avoid
subjectiveness from holding up a model before cluster-
ing. This clustering method makes no assumptions
about the distribution of data and chooses the number
of clusters automatically. One of the few disadvantages
of this algorithm is that it is fairly computationally
expensive. Related to this higher computational cost,
we need to point out two limitations in this study,
both of which can be solved in near future by the
improvement of computers. First, because we aimed a
handy system, we implemented FASTER in a free
software environment R (R Core Team 2012) and
ran on a laptop computer with a single processor. This
resulted in the maximum clustering size at once to be
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5400 epochs practically. For example, if the total data
length is 86 400 epochs (8-day-length data when one
epoch is 8 s), the data are divided into 16 groups and
clustered independently. In this way, 24 h of EEG/
EMG recorded from single mouse can be staged in
10 min. However, if 8-day-length data are clustered
directly, approximately 6 h is expected for staging
1-day-length of data even ignoring other hardware
concerns (e.g., memory size). Ideally, all data should
be processed at once which will be practical in the
future with the increase in speed of computers. Sec-
ond, the number of grid for scanning clusters was opti-
mized maximizing the performance while minimizing
the computation time. Theoretically, the capability in
detection of cluster cores is maximized when all of the
data points are evaluated through the cluster scan.
Therefore, the recommended number of grids of this
clustering might be the number of the data points in
the future.

In the annotation step, we adopted a classical ‘hard’
rule-based selection, which is objective but sensitive
to variance among subjects. This employment was
possible in FASTER algorithm as the results of the
absorbance of the individual variance in the character
extraction and clustering steps as discussed above. This
allowed us to use very simple ‘hard’ rules to annotate
clusters with satisfactory performance.

The robustness of FASTER was tested in drug-
induced unusual sleep/wake conditions and geneti-
cally perturbed animals. The results of satisfactory
detection of drug-induced prolonged wakefulness and
sleepiness show the ability to stage temporarily sleep/
wake differences. Because we have used circadian
mutant Bmal1�/� mice, which have arrhythmic
sleep/wake activity, the high performance of FAS-
TER against these genetically modified animals not
only shows potential to evaluate mutants but also
implies the ability to detect unnatural sleep/wake dis-
tributions. In each experiment, FASTER was compa-
rable to manual staging, which suggests the robustness
of the method and the potential of this method to
analyze animals with unknown sleep/wake status.

In comparison with the latest supervised sleep pro-
grams for rodents, FASTER has comparable accuracy
but lower sensitivity in REM sleep detection. For
example, using approximately 5% of human rater
scored data as a training dataset, Rytk€onen et al. (2011)
achieved accuracy of 93% in rats and in mice, which is
comparable to our results. Their method, however,
was able to detect REM sleep in sensitivity of 89%,
which is higher than our optimized results (Table. 1
and Table S1 in Supporting Information). In this

study, we used full EEG/EMG power spectra in the
character extraction step and then maximized not only
total accuracy but also sensitivity of REM sleep by
optimizing possible critical parameters in this scheme.
Therefore, we expected that, to further increase the
sensitivity of REM sleep, it might be important to use
additional characters, which can efficiently distinguish
REM sleep from other stages. As mentioned above,
the candidates for additional characters are higher-fre-
quency power spectrum or order information of stages.
The improvement of REM sleep sensitivity is at the
top of the list for future works.

We believe at least two points need to be tested in
the future to further confirm the robustness of FAS-
TER. First, we used diphenhydramine to induce pro-
longed sleep. However, this drug is not a major
choice for insomnia patients. To confirm the robust-
ness of FASTER, other drugs for insomnia, that is,
benzodiazepines, should be tested in the future. Sec-
ond, we used Bmal1�/� mice as a sleep disorder
model. In this strain, the sleep/wake distribution is
very different from wild-type mice because of the
clear disorientation in their circadian rhythm. There-
fore, other models characterized by disorganized or
fragmented sleep architecture, which has intact circa-
dian rhythms, such as narcoleptic mice, should be
tested in the future to challenge the robustness of
FASTER in genetically modified mice.

In this study, we have developed FASTER, which
is an unsupervised fully automated sleep staging
method for mice based on comprehensive EEG/EMG
recordings. Full automation was achieved combining
the classical ‘hard’ rule-based annotation with the
modern comprehensive character extraction along
with model-free clustering. FASTER has comparable
accuracy to conventional visual inspection-based man-
ual sleep staging method, and it is quicker than manual
inspection. All of the source codes of FASTER are
fully available because we believe this automated stag-
ing program has potential to free many sleep research-
ers from manual sleep staging labor and making the
source code freely available is a simple, but effective
way to dedicate to the field of animal sleep research.
Therefore, FASTER has the potential to enable data-
driven quantitative and comprehensive sleep research.

Experimental procedures

Animal preparation and data collection

Four C57BL/6J mice (14 weeks old at recording) were used

for optimization of FASTER. To test the method, a total of 9
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mice were used to represent different animal groups. These

mice include two groups of C57BL/6J mice that were adminis-

trated drugs (modafinil, diphenhydramine, 3 mice each, 11–
13.4 weeks old at recording) by intraperitoneal injection and

three Bmal1�/� mice (Shimba et al. 2011) (12–14 weeks old at

recording), which are circadian mutants. All C57BL/6J mice

were purchased from Oriental Yeast Co., Ltd. (Itabashi-ku,

Tokyo, Japan). See Table 1 for a summary of experiments. Pro-

cedures involving animals and their care were performed

according to the RIKEN Regulations for Animal Experiments

(approval ID: AH18-01-19). We anesthetized animals and

implanted telemetry transmitters (Model F20-EET, DSI, St.

Paul, MN, USA) for simultaneous recording of two biopoten-

tials (EEG and EMG). Two stainless-steel screws (1 mm diame-

ter) were soldered to the wires of telemetry transmitters and

inserted through the skull of the cortex (anteroposterior,

+1.0 mm; right, +1.5 mm from bregma or lambda) and served

as EEG electrodes. Two other wires from the transmitter were

placed into trapezius muscles serving as EMG electrodes. Ani-

mals were allowed at least 10 days to recover from surgery.

EEG/EMG data were recorded wirelessly with food and water

available ad libitum. The EEG/EMG data collecting system con-

sisted of transmitters, an analog-digital converter and a recording

computer. Sampling rate was 100 Hz for both EEG and EMG.

Gold Acquisition (version 4.00, DSI) was used for the record-

ing. The EEG/EMG data were converted to ASCII format, and

both the manual and the automated sleep staging were carried

out in the originally developed software on Ruby on Rails, ver.

3.1 (Rails Core Team 2011) and R (R Core Team 2012).

Optimization of FASTER

The animals were housed in an insulated soundproof recording

chamber maintained at an ambient temperature of 21 °C with

a relative humidity of 50%. The chamber was light controlled

under 12-h light/12-h dark cycle (light on at 6:00 A.M.) for

the first 5 days followed by 4 days of constant darkness. The

recording was started on the second day. The data analysis was

carried out by the data recorded 6 days from the 6 A.M. of

the third day (Fig. 4A).

Drug administration

Mice were housed in the same environment as in the record-

ings for FASTER optimization for 10 days, and EEG/EMG

was recorded for 8 days from 6:00 A.M. of the second day.

The light was controlled under 12-h light/12-h dark cycle

(light on at 6:00 A.M.) through the experiment. In the pro-

longed wakefulness experiment (Fig. 5A), modafinil (M6940

-50MG, Lot#029K4618, Sigma-Aldrich, St Louis, MO, USA)

was dissolved to be 1% in sterile natural saline containing 10%

DMSO (06593-54, Lot#LZR7072, NACALAI TESQUE,

INC., Nakagyo-ku, Kyoto, Japan) and 2% cremophor EL

(C5135-500G, 1439553-13509161, Sigma-Aldrich) immedi-

ately before use and administered intraperitoneally at 8:00

A.M. (2:00 in circadian time) on the experimental day at dose

of 0.3 mL per mouse. The control group was administered

vehicle at a dose of 0.3 mL per mouse. Every mouse had two

opportunities for intraperitoneal injection during the experi-

ment (2:00 in circadian time on the third or seventh day), and

if the animal was injected modafinil on the first chance, vehi-

cle was injected on the second and vice versa. In the pro-

longed sleepiness experiment (Fig. 5C), diphenhydramine

(D3630-5G, Lot#040M0205V, Sigma-Aldrich) was dissolved

to be 0.2% to sterile water immediately before use and admin-

istered intraperitoneally at 7:00 P.M. (13:00 in circadian time)

on the experimental day at a dose of 0.3 mL per mouse. The

control group was administered vehicle at a dose of 0.3 mL

per mice. As in the modafinil injection, all mice had two

opportunities for injection (13:00 in circadian time on the

third or seventh day), and if the animal was injected diphen-

hydramine on the first chance, vehicle was injected on the

second and vice versa.

Genetically modified animals

Mice were housed in the same environment as in the record-

ings for FASTER optimization for nine days. The light con-

trol of the chamber was identical to the FASTER

optimization recordings as well (Fig. 5E).

Data analysis

We have used R (R Core Team 2012) on MacBook Air

(1.8 GHz Intel Core i7, 4 GB 1333 MHz DDR3, Mac OS X

Lion 10.7.5) for every analysis. For both manual and automated

staging, data were scored in 8-s epochs. In manual scoring, each

epoch was staged by visual inspection as NREM, REM and

wake by the following criteria: NREM sleep was characterized

by high-amplitude EEG delta waves (0.5–4 Hz) with low

EMG power, REM sleep was characterized by low-amplitude,

high-frequency EEG theta waves (6–10 Hz) with very low

EMG power, and wake was characterized by high and varying

EMG power. In the automated staging, EEG/EMG data were

divided into 8-s epochs and the power spectrum was computed

after detrended by subtracting estimated simple linear regres-

sions followed by the production of a Hann window. Both

EEG and EMG powers from the same epoch were connected

in tandem, resulting in combined EEG/EMG data. Because the

sampling rate was 100 Hz, these 8 s of EEG/EMG combined

power spectra had 798 columns after removal of direct current

amplitudes (the first column in FFT results). If the logarithm to

base 10 of the sum of EEG or EMG power is either above 1 or

2, the epoch was annotated as ‘dirty’ data and ignored for auto-

mated staging. The logarithm to base 10 of every power for

every epoch was computed. By subtracting the mean and divid-

ing by the standard deviation of these values, every power was

normalized within the epoch. Then, the principal component

analysis was performed on the normalized EEG/EMG com-

bined power dataset to reduce the dimension. The top four

principal components were used for clustering giving two

parameters, the smoothing factor and the grid numbers, to the
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pdfCluster library (Azzalini & Torelli 2007). The number of

principal components handed to the clustering library was set to

4 based on optimization. Furthermore, the parameters given to

the clustering library were optimized by simulation study. The

smoothing factor hmult was set to 0.7 and the number of grids

Ngrid was set to 540 when the dataset size is 5400. Because the

clustering time increases in an exponential manner against the

data points, we decided to resample the data and divide the

dataset into subsets which has less size than 5400 points. When

the original data are X = {x1,…, xM} and dividing X into k

subsets, the subset Xi that has N data points (N = 5400 in this

study) will be defined as Xi = {xi, xi+k,…, xi+(N-1)k} where

k = M/N and i = {1,…, k}. The clusters were annotated by the

following rules which were also optimized based on simulation.

First, the median logarithm of EMG power of each clusters was

computed and clusters that have higher median logarithm of

EMG power than the optimized threshold 0.5 quartile of that

of all data points were annotated as ‘wake’. Within the remain-

ing clusters, the median logarithm of EEG delta power (0.5–
4 Hz) was calculated, and if it was greater than the optimized

threshold 0.1 quartile of EEG delta power among all nonwake

data points, it was annotated as ‘NREM sleep’ and the rest of

the clusters were annotated as ‘REM sleep’.

Performance tests

The accuracy is defined by the ratio of epochs that have

agreement with manual and automated staging within the total

number of epochs. The sensitivity of stage X is defined by the

ratio of correctly staged X by automated staging within the

total number of X of manual staging. The specificity of stage

X is defined by the ratio of correctly staged non-X of auto-

mated staging within the total number of non-X of manual

staging.
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