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Abstract

Electroencephalogram (EEG) and electromyogram (EMG) are fundamental
tools in sleep research. However, investigations into the statistical properties
of rodent EEG/EMG signals in the sleep-wake cycle have been limited. The
lack of standard criteria in defining sleep stages forces researchers to rely on
human expertise to inspect EEG/EMG. The recent increasing demand for ana-
lysing large-scale and long-term data has been overwhelming the capabilities
of human experts. In this study, we explored the statistical features of EEG sig-
nals in the sleep-wake cycle. We found that the normalized EEG power den-
sity profile changes its lower and higher frequency powers to a comparable
degree in the opposite direction, pivoting around 20-30 Hz between the
NREM sleep and the active brain state. We also found that REM sleep has a
normalized EEG power density profile that overlaps with wakefulness and a
characteristic reduction in the EMG signal. Based on these observations, we
proposed three simple statistical features that could span a 3D space. Each
sleep-wake stage formed a separate cluster close to a normal distribution in
the 3D space. Notably, the suggested features are a natural extension of the
conventional definition, making it useful for experts to intuitively interpret the
EEG/EMG signal alterations caused by genetic mutations or experimental
treatments. In addition, we developed an unsupervised automatic staging algo-
rithm based on these features. The developed algorithm is a valuable tool for
expediting the quantitative evaluation of EEG/EMG signals so that researchers

Abbreviations: EEG, electroencephalogram; EMG, electromyogram; FFT, fast-Fourier transform; GHMM, Gaussian hidden Markov model; GMM,
Gaussian mixture model; NREM, nonrapid eye movement; PSD, power spectrum density; REM, rapid eye movement.
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can utilize the recent high-throughput genetic or pharmacological methods for

sleep research.
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1 | INTRODUCTION

Sleep is a fundamental process that maintains our physio-
logical balances through the interaction of two regulatory
components: sleep homeostasis and circadian clock.
S.A. Brown and his group revealed that the circadian clock
provisions synapse with transcripts that are later used in
response to sleep-wake cycles (Briining et al., 2019; Noya
et al., 2019). They also showed that the mammalian central
clock system, the suprachiasmatic nucleus, plays a role in
coordinating the transition between sleep and wakefulness
(Collins et al., 2020). These findings highlighted that the
two regulatory components of sleep are more intermingled
than was thought, demanding further identification of
genetic elements and their interactions in the sleep regula-
tory systems (Franken & Dijk, 2024).

The spontaneous oscillatory activity in the brain dur-
ing sleep and wakefulness generates a strong electrical
field, which is readily measurable on the skull through
electroencephalography (EEG) (Buzsdki, 2002). Together
with electromyography (EMG), EEG/EMG has been a
fundamental tool in investigating neural activities and
their underlying molecular or genetic factors involved in
sleep regulation. In recent years, genetic methodologies
in mice have seen rapid and significant advancements,
enabling more efficient perturbation of genes of interest
(Tatsuki et al., 2016; Tone et al., 2022). However, the
development of EEG/EMG analysis technology to assess
the perturbation results has lagged behind.

In sleep studies, researchers typically record several
days of EEG/EMG data per animal. Each record is
divided into short epochs (segments) of several seconds
in length, and human experts assign sleep stages—such
as wakefulness, rapid-eye-movement sleep (REM sleep),
or non-REM (NREM) sleep—to each epoch. The staging
of tens of thousands of epochs, however, consumes a sub-
stantial amount of time for an expert.

Recently, there are tools that can automatically score
the sleep stages from EEG/EMG records by machine
learning (Ellen & Dash, 2021; Grieger et al., 2021; Yamabe
et al., 2019). However, to build an effective machine learn-
ing model, humans must prepare a large amount of data,
and because of the dependence on the prepared data, per-
formance is not always guaranteed for data measured
under different conditions. This might be a severe

hindrance in exploring sleep phenotypes because EEG sig-
nals could be altered by multiple factors, such as the devel-
opmental stages of animals and mutations in sleep-related
genes (Joho et al., 1999; Panagiotou et al., 2017). There
was an effort to address these issues by incorporating
training data from different laboratories, different geno-
types, and even different species (Miladinovic et al., 2019).
However, it is generally challenging for humans to inter-
pret the scoring criteria acquired in the model. This pre-
cludes researchers from investigating the reasons for
automatically scored stages that differ from intuition or
further examining the features in the EEG/EMG data.

Traditionally, the fast-Fourier transform (FFT) power
spectrum is utilized by experts to analyse EEG time series
data for sleep staging. In the NREM stage, there is a notable
increase in power within the delta frequency band (below
4 Hz), contrasting with wakefulness, where an elevation in
power is observed in the high-frequency gamma band
(above 30 Hz) (Buzsaki et al., 1992; Franken et al., 1994).
During the REM stage, the EEG frequency characteristics
bear resemblance to those of wakefulness, with a distinct
increase in theta power (4 to 10 Hz), accompanied by a
marked reduction in EMG signal strength. These distin-
guishing features have been employed for decades as key
indicators of the brain’s neural activity throughout the
sleep-wake cycle, despite the advent of modern computa-
tional methods (Rayan, Agarwal, et al., 2024).

In this study, we aimed to maintain simplicity and
facilitate intuitive interpretation of the data by providing
intuitive criteria based on the classical definition of sleep
stages. To refine the established features to simple and
intuitive features, we have acquired mouse EEG/EMG
data and re-examined the spectrum power distribution
across the 0- to 50-Hz frequency. Our analysis revealed a
symmetrical shift in spectrum power distribution between
wakefulness and NREM sleep, centred around the 20- to
30-Hz frequency band. Notably, during NREM sleep, there
is an increase in low-frequency power (below 30 Hz), in
contrast to an elevation in high-frequency power (30 to
50 Hz) during wakefulness. This pattern suggests that the
high-frequency band, beyond traditional delta and theta
frequencies, holds significant potential for sleep-wake
classification. We demonstrated that a comparative analy-
sis of low- and high-frequency power might contribute to
the accuracy of sleep-wake determination. Additionally,
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the utilization of the statistical principle that the aggrega-
tion of frequency powers converges towards a Gaussian
distribution further enhanced the reliability of our staging
methodology. Moreover, by integrating the notable rise in
theta power in relation to delta power and the concurrent
decrease in EMG signal intensity during REM sleep, we
showed that a distinct metric (REM-metric) effectively dif-
ferentiates REM sleep from wakefulness.

Based on these findings, we supposed that a three-
dimensional (3D) space is defined by the three features:
the low-frequency power, the high-frequency power, and
the REM-metric. In this space, each epoch of EEG/EMG
time-series data takes a position, forming distinct clusters
according to their origin, that is, wakefulness, NREM
sleep, or REM sleep. These clusters are expected to be
close to Gaussian distributions. Also, the transition of
stages is far from random, with a high probability
of remaining in the same stage over time. This property
of clusters underscores the utility of a probabilistic
approach. To model transitions of stages, we employed
the Gaussian hidden Markov model (Gaussian-HMM),
an unsupervised, versatile, and lightweight probabilistic
model. Building upon the 3D space of stage clusters mod-
elled with Gaussian-HMM, we developed an automated
tool for vigilant stage determination from EEG/EMG
time-series data, named FASTER2, an advanced version
of our previously reported EEG/EMG automated staging
tool, FASTER (Sunagawa et al., 2013). FASTER2 imple-
mented a novel algorithm that significantly enhances the
process of sleep stage determination.

We validated FASTER?2 by applying it to both publicly
available EEG/EMG datasets and datasets collected from
two different wildtype mice strains (C57BL/6N and
DBA/2) and mice with sleep gene mutations measured in
our laboratory. FASTER2, being unsupervised, does not
require the preparation of teaching data and parameter
optimization, hence is easily applicable to a range of
sleep research purposes. Moreover, its computation is
lightweight, with most of the operation time being spent
on EEG/EMG data reading and for graph output. As an
open-source resource, FASTER2 is readily accessible to
the research community.

2 | RESULTS

2.1 | Powers of frequencies higher than
30 Hz have information to distinguish
wakefulness and NREM sleep

The power spectrum derived from the EEG using the fast
Fourier transformation (FFT) has been a standard metric
for defining sleep stages. The delta power (<4 Hz) and
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the theta power (4-10 Hz) are especially reliable factors
as they are prominent in NREM sleep and REM sleep,
respectively. While numerous automated sleep staging
tools focused on analysing frequencies below 30 Hz,
including delta and theta powers (Grieger et al., 2021;
Van Gelder et al.,, 1991; Veasey et al., 2000), studies
showed that the gamma power (>30 Hz) elevates during
wakefulness in rodents, suggesting that higher frequency
powers can offer valuable insights for differentiating
sleep stages (Buzsdki et al., 1992; Franken et al., 1994).
To explore this potential, we analysed EEG/EMG signals
from an 8-month-old wildtype mouse (C57BL/6N) over a
5-day period. We divided the recordings into 8-s segments
(epochs) and manually assigned each to a sleep stage
(NREM, Wake, or REM) (Figure 1a). During this process,
we observed instances where EMG signals contradicted
expected patterns, showing high signals during NREM
sleep or low signals during wakefulness, which indicated
the EEG signals as a more reliable metric for sleep stage
classification (Figure 1b).

To make an objective metric, we subjected each epoch
to FFT by using the Welch method to estimate the power
spectrum density (PSD) (Virtanen et al., 2020). The PSD
indicated the apparent increase of the power at the lower
frequency band in NREM sleep over wakefulness
(Figure 1c). In contrast, the difference in the powers at
the higher frequency band was unclear as the mean
values of powers were small both in NREM sleep and
wakefulness (Figure 1c). Although this relatively weak
power in the high-frequency domain made the high-
frequency powers look less informative, we saw there
was a linear relation between the mean values and the
standard deviation of the powers across frequency
domains (Figure S1). This linear relation indicated that
the logarithmic transformation of powers makes the dis-
tribution closer to the normal distribution and statisti-
cally more tractable (Montgomery et al., 2021). Indeed,
the difference in powers became apparent at the higher
frequency domain after the logarithmic transformation
(Figure 1d). Then, we normalized the distribution of the
logarithmically transformed powers, making (mean, SD)
= (0, 1) at all frequency bins over all epochs. This nor-
malization allowed us to fairly compare powers over the
whole range of frequencies and showed that the differ-
ence between NREM sleep and wakefulness in the higher
frequency domain was as large as in the lower frequency
domain (Figure 1e). The same logarithmic transforma-
tion and normalization showed that the PSD of EMG sig-
nals also exhibited a comparable amount of difference
between NREM sleep and wakefulness at lower and
higher frequency bands (Figure 1f).

We then calculated the summations of PSD values for
the lower frequency band (<20 Hz) and the higher
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FIGURE 1 The normalized power spectrum density (PSD) of EEG shows a contrast pattern between NREM sleep and wakefulness.
(a) The typical EEG and EMG signals of each sleep stage; NREM sleep, wakefulness, and REM sleep over 2 epochs (16 s). (b) The atypical
EEG and EMG signals of NREM sleep and wakefulness. The whole 5 days recorded voltages were normalized to have the mean and
standard deviation of 0 and 1, respectively in (a) and (b). (c) The PSD of each sleep stage. The black line is the mean of power densities
across sleep stages in the 5 days recording. (d) The log-transformed PSD of each sleep stage. The black line is the mean of power densities
across sleep stages. (e) The normalized PSD of each sleep stage. The mean and standard deviation of power densities across sleep stages are
on the x-axis and +1, respectively. (f) The normalized PSD of each sleep stage derived from EMG. The mean and standard deviation of
power densities across sleep stages are on the x-axis and +1, respectively. The coloured lines are means of sleep stages. The shaded area
represents +standard deviation in (c-f). (g) The epoch distribution of the sum of low-frequency (<20 Hz) power densities of NREM sleep or
active brain states. (h) The epoch distribution of the sum of high-frequency (>30 Hz) power densities of NREM sleep or active brain states.
The normal distribution curves corresponding to each distribution’s mean and standard deviation were plotted in (g and h).

frequency band (>30 Hz). We divided each summation
by the square root of the number of PSD components
within the band, ensuring comparability across different
frequency bands. Each frequency band contains 52 fre-
quency components, so we expected that the distribution
of summed values of epochs was close to the normal dis-
tribution given the central limit theorem. Indeed, the his-
tograms of the summed power values of the lower and
higher frequency domains seemed to obey normal distri-
butions with different parameters associated with sleep
stages (Figure 1g,h).

2.2 | The EEG signal suffices to
distinguish NREM sleep from active brain
state, while the EMG signal differentiates
REM from wakefulness in the active states

The brain states can be roughly divided into two states:
One is the NREM sleep, and the other is the active state.
The active state is composed of wakefulness and REM
sleep. Because both wakefulness and REM sleep generate
similar EEG signals with high frequency and low ampli-
tude, and the amount of REM sleep is relatively small
(about 5%) in a day, the summed PSD values of the active
brain state form a distribution that is close to normal dis-
tributions either with the lower and higher frequency
domain (Figure 1g,h).

To highlight the difference in distributions of NREM
sleep and the active state, we drew a scatter plot on the
two axes of low-frequency and high-frequency normal-
ized powers. Points on the scatter plot were epochs of the
EEG signal, and the summed PSD values of each epoch
were calculated for low-frequency and high-frequency
domains. The scatter plot clearly showed that the epochs
of active and NREM sleep formed distinctive clusters on
both sides of the diagonal line (Figure 2a). Notably, the
separation was along the line perpendicular to the diago-
nal line, implying that the low- and high-frequency pow-
ers are equally informative in classifying NREM sleep
and the active brain state (Figure S2). Indeed, the

diagonal line had a good separation of NREM sleep and
the active state. The 96.8% of NREM sleep epochs and
96.0% of active epochs were under and above the diago-
nal line, respectively. This observation indicated that the
analysis of EEG signals could achieve a practically suffi-
cient performance without relying on EMG signals for
separating NREM sleep and the active state.

When we labelled REM epochs in the two-
dimensional (2D) plane, we found REM epochs were
mostly in the active cluster and overlapped with the clus-
ter of wakefulness (Figure 2a). To separate REM sleep
from wakefulness, we introduced an additional metric.
During REM sleep, the theta power in the EEG is higher
compared with delta power (Figure 1e), and the EMG sig-
nals are lower than during NREM sleep (Figure 1f). In
addition, the metric defined as theta-frequency power/
(delta-frequency power * muscle power) was proven useful
(Soltani et al., 2019). Based on these observations, we
defined the REM-metric as follows:

. 1
REM_metric = l’l— E EEGnormalizedgower
V/ fiheta_freq thetagrequencies
_
Ndelta_freq deltagrequencies
1

EE Gnormalized _power

I — EM Gnormalized_power

v/ Pimuscle_freq musclesrequencies

where theta_frequencies, delta_frequencies, and muscle_fre-
quencies are the frequency bins in the ranges from 4 to
10 Hz, from 0 to 4 Hz, and >30 Hz, respectively. Nerq_freq,
Ndelta_freqs ANA Mpyycie freg ar€ the numbers of frequency
bins in each range. EEG,ormaized_power AN EMGyyopmaiized -
power are the normalized log-transformed powers of EEG
and EMG, respectively. We focused on the high-frequency
domain of EMG normalized powers to define the muscle
power because the mean of low-frequency powers was
variable depending on frequencies (Figure 1f).

By introducing this REM-metric as the z-axis to the
two-dimensional plane, we plotted a 3D scatter plot of
epochs. This scatter plot showed a clearly separated
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FIGURE 2 Manually annotated epochs form separated sleep-stage clusters that are close to normal distributions. (a) Three sleep-stage
clusters plotted on the 2D space spanned by the two metrics; low-frequency and high-frequency normalized powers. The NREM sleep and
wakefulness clusters distribute above and below the diagonal line. The REM sleep cluster largely overlaps with the wakefulness cluster and
is hardly visible. (b) Three sleep-stage clusters plotted on the 3D space expanded from the 2D space of (a) by adding the REM-metric as z-
axis. (c) Three sleep-stage clusters plotted on the 2D space spanned by the two metrics: low-frequency powers and REM-metric. The low-
frequency powers include all frequency bins in the range from 0 to 20 Hz. Ellipsoids represent the contour of the 95% confidence area of
normal distributions of each cluster. (d) Three sleep-stage clusters plotted on the 2D space spanned by the two metrics: modified-
low-frequency powers and REM-metric. The modified-low-frequency powers are the frequency powers given by subtracting the theta
frequencies (4-10 Hz) band from the low-frequency powers. Ellipsoids with solid lines represent the contour of the 95% confidence area of
normal distributions of each cluster in the space. Ellipsoids with the dashed lines are the same contours plotted in (c).

REM cluster above the wakefulness cluster (Figure 2b). In the subsequent analysis, we used a modified ver-
It is noteworthy that because the REM-metric is sion of the low-frequency metric. We modified the metric

defined only by linear operations (subtractions) on vari- of low-frequency normalized power by excluding the theta
ables from a normal distribution, it is expected that each band (from 4 to 10 Hz) to reduce the confounding effect

cluster—whether REM sleep, NREM sleep, or  of theta-power that rises in various brain activities
wakefulness—would follow a normal distribution along (Buzsaki, 2002). The exclusion of the theta band made
the z-axis. the variance of each stage smaller on the x-axis and was
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FIGURE 3

Clusters can be automatically annotated in the space of the proposed 3D metrics. (a) The diagonal line separates epochs

into two clusters of NREM sleep and the active brain state. (b) The active cluster expanded into the third dimension by adding the REM-
metric as the z-axis to the 2D space of (a). (c) The clusters we focused based on their coordinates by excluding the intermediate epochs from
(b). The bottom cluster was regarded as the core of the wakefulness cluster (red), and the top cluster was regarded as the core of the REM
sleep cluster (yellow). (d) The GMM estimated three clusters on the epochs in (c), that is, the REM sleep cluster (yellow), the wakefulness
cluster (red), and the intermediate cluster (green). (e) Two clusters resulted from merging the intermediate cluster into the wakefulness
cluster in (d), that is, the REM sleep cluster (yellow) and the wakefulness cluster (red). (f) Starting from the three clusters in of (a) and (e),
that is, the NREM sleep cluster of (a), REM sleep and wakefulness clusters of (e), the Gaussian hidden Markov model estimated the REM
sleep, wakefulness, and NREM sleep clusters in the 3D space by taking the transition probability into account. (g) The 3D view of the
automatically staged clusters by the GHMM. The 2D plot was drawn by projecting the 3D space onto the low-frequency and REM-metric
axes in (f). Ellipsoids represent the contour of the 95% confidence area of normal distributions in (a and d-f). (h) The confusion matrix
derived from the comparison between manual stating and automatic staging with number of matched epochs shown at each intersection.
The data consists of 5 days recording of one mouse (54,000 epochs in total). (i and j) Example epochs where human scorer corrected the
automatic staging. The automatic stage label is on the left corner of each epoch, and the corrected manual stage is above the strikeout
automatic stage if it was manually corrected. The EEG and EMG signals are plotted with blue and red lines, respectively. The whole five-day
recorded voltages were normalized to have the mean and standard deviation of 0 and 1. Each dashed vertical bar represents epoch division
with a length of 8 (s). The probabilities of wakefulness, REM sleep, and NREM sleep are plotted at the bottom with red, yellow, and blue
lines, respectively. An example of correction from wakefulness to NREM sleep (i). An example of correction from NREM sleep to

wakefulness (j).

expected to stabilize the performance of classifying the
sleep stages (Figure 2c,d).

2.3 | The Gaussian mixture model
estimates NREM, REM, and wakefulness
clusters

In the previous section, we saw that each cluster of REM,
NREM, and wakefulness forms a distribution close to the
normal distribution. Based on the observations, we
intended to estimate the parameters of each normal
distribution by using the Gaussian mixture model. To
standardize these summed PSD values, such as the low-
frequency-, high-frequency-, and muscle normalized-power,
we divided each by the square root of the number of PSD
components within the band, ensuring comparability
across different frequency bands. By using these three
metrics, every epoch of EEG/EMG signals was plotted in
the 3D space, and epochs formed a mixture of clusters of
REM sleep, NREM sleep, and wakefulness that is each
close to a normal distribution.

However, the sizes of each normal distribution are
not balanced; the REM cluster constitutes only small
number of the total epochs, and there is significant over-
lap between the distributions. These properties of the
unbalanced mixture distribution of REM sleep, NREM
sleep, and wakefulness posed a difficulty in estimating
the parameters of each component distribution. To
robustly estimate each distribution, we introduce a priori
knowledge. Namely, REM sleep and wakefulness are
both derived from the active state, and their epochs
exhibit higher high-frequency power than low-frequency

power. Conversely, NREM sleep epochs show opposite
pattern. Therefore, clusters of active state epochs and
NREM sleep epochs should be roughly separated by a
diagonal line passing through the origin on a two-
dimensional plane, as we saw in the previous
section (Figures 2a and 3a). All epochs were then pro-
jected onto the axis perpendicular to the diagonal line,
and the Gaussian mixture model (GMM) classified the
NREM sleep and active state’s epochs on the axis
(Figure S3a).

Next, to separate the REM sleep cluster within the
active cluster from wakefulness, we introduced the REM-
metric as defined in the previous section to expand the
active cluster into the third-dimension space. Given
the EMG component of the REM-metric and its suscepti-
bility to contamination (e.g., cardiac signals), the REM
sleep cluster sometimes extends into an intermediate
zone between REM sleep and wakefulness (Figure 3b).
Also, the distribution of the wakefulness cluster varies
depending on the animal’s behaviour (e.g., moving
around, staying still, and eating). Furthermore, the num-
ber of epochs in the REM cluster is extremely small com-
pared with the number of epochs in the wakefulness
cluster (usually about 1/10). These characteristics of
REM sleep and wakefulness clusters make the automatic
separation a challenging task. In this study, we decided
to start with roughly estimating the “cores” of the wake-
fulness and REM sleep clusters. First, we excluded
epochs within the intermediate zone, only focusing on
reliable wakefulness and REM sleep epochs to estimate
clusters based on their coordinates (Figure 3c). The core
parts of each cluster appear in approximately the same
positions in the 3D space regardless of the experimental
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conditions because the frequency power is normalized.
The centre of the wakefulness cluster can be roughly
identified around (x, y, 7) = (=5, —5, —5 to —10), and the
centre of the REM sleep cluster around (0, 0, 15 to 20).
Based on these empirical values, we focused on epochs
whose coordinates were REM-metric < 0 and low-
frequency power < 0 as the wakefulness and also focused
on epochs whose coordinates were REM-metric > rem-
floor as REM sleep. The constant rem-floor was defined as
/Miheta_fregs + /Pin_muscle_fregs Dased on the definition of
the REM-metric, expecting the mean of data-frequency
power to be zero, means of theta-frequency power and
muscle-power are higher and lower than at least 1 SD,
respectively, in REM sleep (Figures 3c and S3c). We
then estimated a GMM with three clusters, namely, the
wakefulness cluster, the REM sleep cluster, and an
intermediate cluster, using the core coordinates (x, y, 2)
=(-5, -5, —10), (0, 0, 20), and (0, 0, 0), respectively, as
initial values (Garreta & Moncecchi, 2013). We esti-
mated three clusters because, as mentioned, the wake-
fulness cluster might consist of multiple overlapping
clusters reflecting its different behavioural states, such
as moving around and staying still (Figures 3d and
S3d). Finally, we merged the wakefulness and interme-
diate clusters and designated them as a wakefulness
cluster. With this procedure, we were able to consis-
tently estimate the wakefulness and REM clusters
(Figures 3e and S3e).

Having identified distinct clusters for wakefulness,
REM sleep, and NREM sleep, we faced the challenge of
defining precise cluster borders. The GMM delineates
these borders based on the probability distance from each
distribution’s centre, leading to artificial and sometimes
unnatural transitions between sleep stages (Figure 3a).
To incorporate the generally low transition probability
between stages, we used the Gaussian hidden Markov
model (GHMM) (Lebedev, 2016). GHMM is a versatile
model that outputs random variables according to nor-
mal distributions for each state, that is, REM sleep,
NREM sleep, or wakefulness, while transitioning stages
according to the Hidden Markov model. We started from
the three clusters estimated by the GMM and optimized
the GHMM. During this process, we applied constraints
to ensure that each cluster does not significantly exceed
its boundaries inherent from its definition; that is, the
REM sleep cluster should reside in the area where the
low-frequency power is less than zero, and the REM-
metric is more than zero. Also, we assumed that the prin-
cipal axes of the 95% confidence area of NREM and
wakefulness clusters should not cross the diagonal line
(Figure 3a). Through GHMM, we calculated the likeli-
hood of each epoch belonging to a specific sleep stage,
assigning stages based on the highest likelihood. This

T Wiy

process resulted in labelled epochs that formed three
clusters corresponding to REM sleep, NREM sleep, and
wakefulness, with nuanced intermingling at cluster
boundaries (Figure 3g,h and Table 1). We developed this
algorithm in Python, naming the developed tool as
FASTER?2.

2.4 | FASTER2 is robust and accurate
with a practical sufficiency

To evaluate the practical applicability of FASTER2, we
labelled each epoch using FASTER2 and evaluated how
well these stage labels matched with labelling conducted
by a human expert. First, we reanalysed EEG/EMG sig-
nals from eight mice measured in our laboratory (Tone
et al., 2022). The eight mice were composed of four nor-
mal sleep phenotype mice and four long sleep phenotype
mice. All mice (C57BL/6N) were injected with adeno-
associated virus (AAVs) carrying wildtype or mutant
CamklIIf gene. The signals were divided into epochs of
8 s in length, and each epoch was labelled with FASTER2
then corrected with visual inspection for the segment of
24 h. The manual labels were compared with the auto-
matic stages of FASTER2. We found that FASTER2
achieved sufficient accuracy (Table 2).

Next, to evaluate the robustness of our method, we
focused on a different inbred strain mouse and used the
EEG/EMG data of three wildtype DBA/2Cr mice mea-
sured in our laboratory. The signals were divided into
epochs of 8 s in length, and each epoch was labelled with
FASTER?2 then corrected with visual inspection for the
segment of 48 h. Interestingly, we found occasional
occurrence of brief spindle episodes in EEG, even during
wakefulness (Ryan, 1984). The presence of spindles sug-
gested that they should be classified as NREM sleep
(Fuentealba & Steriade, 2005). FASTER?2 aligned with the
expectation and staged those epochs as NREM sleep
when the epoch was dominated by the spindle episode,
even if it was an isolated epoch surrounded by wakeful-
ness epochs (Table 3).

Furthermore, to confirm that the developed algorithm
in FASTER2 was not overly optimized for our laboratory
environment (amplifiers or animal lineage), we applied
FASTER2 to publicly available rat EEG/EMG data
(Ellen & Dash, 2021). Because the dataset was composed
of EEG 2ch + EMG 1ch, we simply extracted one chan-
nel of EEG signal, converting the EEG/EMG signals to
EEG 1ch + EMG 1ch data format, which conforms to the
FASTER2. The dataset also contained manual staging.
Therefore we could evaluate the FASTER2 without intro-
ducing our unconscious bias in the manual staging. This
evaluation confirmed that FASTER2 was highly accurate
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TABLE 1 Summary of evaluation results of FASTER2’s each analysis step.

NREM- NREM- REM-
Mouse ID rec prec rec
Active and NREM separation ~ 0.974 0.961 -
(Figure 3a)
REM and wake separation - - 0.602
(coordinates, Figure 3c)
REM and wake separation - - 0.943
(GMM, Figure 3e)
Three stage separation 0.974 0.961 0.827
(Figure 3d + NREM)
Three stage separation 0.997 0.998 0.993

(GHMM, Figure 3f,g)

0.981

REM- Active or Active or F1
prec wake-rec wake-prec  Accuracy score Kappa
0.960 0.973 0.967 0.967 0.934
0.983 0.984 0.983 0.926 0.938 0.638
0.958 1.000 0.969 0.968 0.955  0.823
0.958 0.969 0.969 0.965 0.964 0.935
0.998 0.999 0.998 0.998 0.996

Note: The recall scores and the precision scores of each sleep stage (NREM sleep, REM sleep, and wakefulness) were based on the prediction by the FASTER2’s
each analysis step, given the manual staging as the ground truth. Accu and kappa are the accuracy and Cohen’s kappa, respectively. F1 score calculated metrics
for each label and find their average weighted by support (the number of true instances for each label). The data recorded for 5 days (54,000 epochs) from one

C57BL/6N mice was used for this evaluation.

TABLE 2 Summary of evaluation results of FASTER2 with manually annotated stages of genetically modified C57BL/6N mice.

Mouse ID NREM-rec NREM-prec REM-rec

Normal 01  0.980 0.980 0.938 0.852
Normal 02  0.967 0.990 0.983 0.853
Normal 03 0.978 0.990 0.990 0.848
Normal 04 0.975 0.981 0.938 0.817
Long 01 0.978 0.993 0.993 0.878
Long_02 0.948 0.991 0.988 0.857
Long_03 0.974 0.993 0.998 0.912
Long_04 0.970 0.990 0.997 0.843

REM-prec

Wake-rec Wake-prec Accuracy Flscore Kappa
0.985 0.997 0.980 0.980 0.964
0.993 0.991 0.981 0.981 0.966
0.991 0.996 0.985 0.985 0.973
0.985 0.996 0.978 0.978 0.959
0.986 0.984 0.982 0.982 0.964
0.982 0.933 0.961 0.962 0.926
0.982 0.957 0.977 0.978 0.953
0.982 0.989 0.977 0.977 0.958

Note: The recall scores and the precision scores of each stage (NREM sleep, REM sleep, and wakefulness) were based on the prediction by FASTER2, given the
manual staging as the ground truth. Kappa is Cohen’s kappa. F1 score calculated metrics for each label and find their average weighted by support (the
number of true instances for each label). The data recorded for 3 days and 24 h of it (10,800 epochs for each mouse) were used for this evaluation.

TABLE 3 Summary of evaluation results of FASTER2 with manually annotated stages of a different inbred strain (DBA/2Cr).

Mouse ID NREM-rec NREM-prec REM-rec

DBA2_1 0.999 0.988 0.992 0.994
DBA2 2 1.000 0.967 0.990 0.996
DBA2_3 1.000 0.981 0.999 1.000

REM-prec

Wake-rec Wake-prec Accuracy Flscore Kappa
0.984 1.000 0.993 0.993 0.987
0.969 1.000 0.983 0.982 0.968
0.975 1.000 0.990 0.990 0.981

Note: The recall scores and the precision scores of each stage (NREM sleep, REM sleep, and wakefulness) were based on the prediction by FASTER2, given the
manual staging as the ground truth. Kappa is Cohen’s kappa. F1 score calculated metrics for each label and find their average weighted by support (the
number of true instances for each label). The data recorded for 4 days and 48 h of it (21,600 epochs [8 s/epoch] for each mouse) were used for this evaluation.

regardless of laboratory environment and animal lineage,
demonstrating that FASTER2 is a robust and versatile
tool (Table 4).

FASTER2 assumes that epochs originating from
NREM sleep and the active state are distributed on either
side of the diagonal line on the two-dimensional plane,
which is spanned by the low- and high-frequency nor-
malized power (Figure 3a). Therefore, it was anticipated

that the estimation of the Gaussian mixture model might
fail when epochs originating from one brain state pre-
dominate. That is, if the time series of the EEG signal is
biased towards either NREM sleep or the active state, the
overall distribution also shifts accordingly, which may
cause the centres of NREM sleep and the active state
clusters to deviate from the diagonal of the
two-dimensional plane (Figure S4a). To correct this, we
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TABLE 4 Summary of evaluation results of FASTER2 with manually annotated stages in the publicly available dataset.

RatID NREM-rec NREM-prec REM-rec REM-prec
rat_01 0.976 0.873 0.949 0.762
rat_02 0.971 0.868 0.939 0.700
rat_03 0.972 0.891 0.927 0.728
rat_04 0.980 0.916 0.960 0.765
rat_05 0.965 0.921 0.935 0.688

Wake-rec Wake-prec Accuracy Flscore Kappa
0.864 0.996 0.919 0.919 0.855
0.860 0.996 0.913 0.914 0.843
0.857 0.996 0.918 0.919 0.853
0.876 0.993 0.933 0.934 0.881
0.889 0.976 0.930 0.931 0.871

Note: The recall scores and the precision scores of each stage (NREM sleep, REM sleep, and wakefulness) were based on the prediction by FASTER2, given the
manual staging as the ground truth. Kappa is Cohen’s kappa. F1 score calculated metrics for each label and find their average weighted by support (the
number of true instances for each label). The data recorded for 1 days and 24 h of it (21,600 epochs [4 s/epoch] for each mouse) were used for this evaluation.
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FIGURE 4 FASTER?2 can correctly estimate the abnormal amount of sleep-stages. (a) The estimated time of sleep-stages (NREM sleep,
wakefulness, or REM sleep) in a day by varying the NREM sleep time. The solid line is the expected time according to the various NREM
sleep ratios in a day. The ratio of REM sleep in a day was fixed to 0.05. The dot is the time of sleep-stages estimated by FASTER?2. (b) The
estimated time of sleep-stages in a day by varying the REM sleep time from 0 to 0.35. The ratio of NREM sleep to wakefulness was fixed to
1. The solid line is the expected time according to the various REM sleep ratios in a day. The dot is the time of sleep-stages estimated by

FASTER2.

projected all epochs onto the axis perpendicular to the
diagonal line and estimated two normal distributions for
NREM sleep and the active state clusters, ensuring that
the centre of the means of these normal distributions lies
on the diagonal line (Figures S4b and S4c). To ascertain
the level of bias our implementation could correct, we
generated synthetic EEG/EMG data by sampling NREM
sleep and the active state signals at various ratios from
actual data and applied FASTER2. We found that up to
about 80% bias towards either state did not affect the
estimation (Figure 4a), indicating that FASTER2 is appli-
cable even when NREM sleep exceeds 1000 min per day.
Moreover, we assessed FASTER2’s performance in esti-
mating REM sleep stages. Considering reports of mutants
with minimal REM sleep detection (Niwa et al., 2018),
we explored scenarios with REM constituting between
0% and 30% of a day. By incorporating an exception-
handling mechanism to operate GHMM solely with

NREM and wakefulness in the absence of REM, we
ensured accurate stage determination across the entire
range (Figure 4b). These findings demonstrated FAS-
TER2’s practicality for studying not only wildtype but
also mutant mice with diverse sleep phenotypes.

3 | DISCUSSION

3.1 | The spectrum power of NREM
sleep and the active state crosses around
20-30 Hz

It is well-established that low-frequency power increases
during NREM sleep. Similarly, the elevation of
high-frequency power, such as gamma waves, during
wakefulness is recognized. Our present analysis revealed
a distinct shift in the spectrum power on the high-
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frequency side, akin to that observed on the low-
frequency end, by normalizing the log-transformed spec-
trum power across all frequencies to a mean and variance
of 0 and 1, respectively, based on sleep stages. Conse-
quently, high-frequency normalized power is prevalent in
the active state, including wakefulness and REM sleep,
while low-frequency normalized power is dominant in
brains during NREM sleep. The intersection of these high
and low-frequency power predominancies occurs around
20-30 Hz. Intriguingly, this pattern was also observed in
rat data acquired externally, indicating that the utiliza-
tion of both low and high-frequency powers from the
power spectrum effectively distinguishes between NREM
sleep and the active state across different species and
measurement systems. The observation of the enhanced
high-frequency power (30-50 Hz) during wakefulness
compared with sleep might suggest that functional brain-
waves contribute to the high-frequency power compo-
nent. For example, Gamma waves, typically in the range
of 30 to 100 Hz, are known to be involved in higher cog-
nitive functions such as attention and perception and in
controlling the timing of sensory input in the cortex
(Cardin et al., 2009). The increase in high-frequency
power during wakefulness, as identified by our method,
aligns with these findings. However, it should be noted
that cortical oscillations in this band also occur during
sleep (Csicsvari et al., 2003; Steriade et al., 1996), indicat-
ing that high-frequency functional brainwaves like
Gamma waves are not definitive feature of wakefulness.
These observations suggest that not only the delta
power but the entire frequency range of the low-
frequency normalized power contained useful informa-
tion, and the information given by the low-frequency
power can be corroborated with the high-frequency
power. While many existing automatic sleep staging tools
focus on low-frequency powers (Grieger et al., 2021;
Miladinovi¢ et al., 2019; Van Gelder et al., 1991; Veasey
et al., 2000), studies use high-frequency EEG powers such
as Gamma, in addition to the Delta, Theta, Alpha, Beta
bands along with EMG signals. Interestingly, a study
indicated the possibility of identifying sleep substages by
training a machine learning model (Boltzmann
machine), in addition to traditional sleep stages
(Katsageorgiou et al., 2018). Notably, they mentioned in
another work that by using a log transformation, the
distribution of EEG power becomes closer to a normal
distribution, making various analytical methods easier to
use (Katsageorgiou et al., 2015). However, because
machine learning models and principal component anal-
ysis were employed in their works, the combinations of
frequency bands to focus on might change depending on
dataset. This dependency on the dataset makes it difficult
for humans to interpret the obtained sleep stage

classification results. In FASTER2, we endeavoured to
define features as simply as possible and in line with clas-
sical definitions to make the classification results easily
interpretable by humans. To achieve this, instead of rely-
ing on a single classification method or machine learning
model, we designed and implemented a stepwise classifi-
cation process involving the separation of the active state
and NREM sleep using a diagonal line in the feature
space, the separation of wakefulness and REM sleep from
the active state using GMM, and the separation of NREM
sleep, wakefulness, and REM sleep using GHMM.

In FASTER2, a similar bandwidth to the low-
frequency power was used for the high-frequency power,
which was in the range of approximately 30-50 Hz.
Therefore, if EEG/EMG data was recorded with a sam-
pling frequency of 100 Hz or higher, which gives a
Nyquist frequency of higher than 50 Hz, FASTER2 can
be applied. The sampling frequency of 100 Hz or higher
is a relatively standard frequency for EEG/EMG. Hence,
we suppose most of the data recorded so far conform to
this requirement. However, even if the sampling fre-
quency is over 100 Hz, FASTER2 cannot perform to its
full potential if the 30- to 50-Hz bandwidth is filtered out,
except with filters strictly limited to removing power-line
noise at 50 or 60 Hz.

3.2 | The sampling frequency and epoch
length for analysis can be flexibly changed

FASTER?2 can be applied to EEG/EMG data obtained in
different laboratories with parameters used so far in the
laboratory. We developed FASTER2 primarily using data
obtained at sampling frequencies of 100 or 128 Hz from
C57BL/6N mice in 8-s epochs. However, these parame-
ters, such as sampling frequency and epoch length, often
vary by laboratory. For example, the public data that we
used for Table 4 was recorded at a sampling frequency of
250 Hz from SD rats with an epoch length of 4 s (Ellen &
Dash, 2021). To accommodate data with those different
parameters, FASTER2 uses the Welch method for PSD
calculation, dividing one epoch into multiple overlapping
windows, performing FFT on each window, and averag-
ing the FFTs from each window. In addition, we set the
FFT window width to a constant (2.56 s) regardless of
the sampling frequency or epoch length to ensure that
the frequency bins of the resulting PSD are constant.
Thus, changing the sampling frequency and epoch length
does not require any adjustments to the following FAS-
TER2 processes, such as scattering each epoch into the
3D space and estimating parameters of normal distribu-
tions of stage clusters in the 3D space. A similar process
might also be beneficial for analysing various types of
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datasets in addition to EEG/EMG, such as acceleration
data recorded on the wrist for human activity (Maczdk
et al., 2023). Additionally, because FASTER2 normalizes
power distribution at each frequency bin and uses the
summed values of the normalized powers for determin-
ing sleep stages, it is robust to differences in the sensitiv-
ity at any frequency, which can vary depending on the
design and implementation of recording equipment.
These properties of FASTER2 allow it to be applicable to
data obtained under various conditions in different labo-
ratories without intricate tunings.

3.3 | The FASTER2 is based on the
classical definition of sleep stages

This study captured simple statistical properties of
EEG/EMG signals in the sleep-wake cycle. We normal-
ized the log-scaled PSDs derived from EEG and EMG sig-
nals to make the distribution at each frequency conform
to a mean of 0 and a standard deviation of 1 over all the
epochs of the recorded data. Then, we spread each epoch
into 3D space spanned by the three axes of the low-
frequency normalized power, high-frequency normalized
power, and the REM-metric. The low-frequency normal-
ized power, high-frequency normalized power, and REM-
metrics consist of 37, 52, and 78 normalized PSD values.
Because only the linear operations are used in calculating
these three metrics, the resulting metric values are
expected to approach a normal distribution according to
the central limit theorem. This property of the metrics
made the subsequent analysis simple. We could expect
that clusters of epochs of each sleep stage distribute like a
Gaussian distribution in the 3D space. This statistical
property of clusters allowed us to apply the useful, popu-
lar, and established methods in the subsequent analysis
that assume the input dataset is subject to the Gaussian
distribution. In addition to the preferable statistical prop-
erty, the three metrics well separated the clusters of each
sleep stage.

Importantly, we could tell where epoch clusters origi-
nating from each stage should be located in the 3D space,
based on the classical definition of NREM sleep, wakeful-
ness, and REM sleep. NREM sleep is characterized by a
higher power in the low frequency compared with the
high frequency. The centre of the epoch cluster originat-
ing from NREM sleep should be located in the region
where y < x on the xy plane within the 3D space where
the x-axis and y-axis are for the low frequency and high
frequency, respectively. In contrast, because a higher
power in the high frequency characterizes wakefulness
compared with the low-frequency, the centre of the clus-
ter originating from wakefulness should be located in the

region where y > x on the xy plane within the 3D space.
During wakefulness, strong EMG signals are measured
due to muscle activity for body movement. This activity
causes the centre of the wakefulness cluster to be located
below the xy plane (z < 0); that is, the centre is below the
average of all epochs in the z direction. Because REM
sleep is defined by EEG waveforms similar to wakeful-
ness, the centre of the cluster originating from REM sleep
should be located in the region where y > x, which is sim-
ilar to the wakefulness cluster or near y = x. However,
during REM sleep, a significant decrease in EMG signals
is observed due to muscle atonia, positioning the centre
of the REM sleep cluster above the xy plane (z > 0) in the
3D space. Furthermore, because the definition of the z-
axis includes the relative values of theta power and delta
power, epochs corresponding to REM sleep are clearly
separated above the wakefulness cluster along the z-axis.

We can approximately predict where each cluster
forms a Gaussian distribution in the 3D space according
to the classical definition of sleep stages. However, this
approximation can be somewhat coarse for actual data.
The fitting of two Gaussian distributions to the wakeful-
ness cluster suggests that the wakefulness state can be
divided into multiple states. However, the wakefulness
and intermediate clusters are close to each other and
largely overlap (Figures 3d and S3d), and their separation
are not consistent across different measurements. Partic-
ularly for the NREM sleep cluster, it occasionally appears
divided into two or more distributions along the z-axis.
This is because the NREM sleep cluster often has a rela-
tively large spread in the z-direction, corresponding to
the occurrence of NREM sleep with stable yet strong
EMG signals. The EMG signals during NREM sleep,
unlike during wakefulness, have a constant amplitude,
suggesting that these EMG signals during NREM sleep
reflect muscle tension for maintaining posture rather
than body movement. Although this deviation of the
NREM sleep cluster from the predicted distribution
might seem to confound FASTER2, the NREM sleep clus-
ter still resides in the expected region in the 3D space;
¥y < x. In the region, we can safely regard the distorted
NREM sleep cluster as a single normal distribution.

On the other hand, if the distribution of EEG/EMG
data deviates from the expectation in regard to the posi-
tion of centres and the shape of spreads, it may indicate
that the EEG/EMG signals do not conform to the classi-
cal definitions of sleep stages or simply that the signal
quality is unacceptably low due to measurement noise or
disconnection of signal cables. In any case, the deviation
of clusters indicates that FASTER2 cannot provide a reli-
able judgment of stages, and even experienced human
experts would struggle with making judgments on such
data. Thus, by simply looking at the scatter plot output
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by FASTER2, it is possible to overview the overall quality
of the EEG/EMG data.

FASTER2 makes determinations in accordance with
classical definitions, making it easy for human
researchers to understand the rationale behind the deci-
sion results. A possible source of difference in the deter-
mination is the transitioning epoch. For example,
animals briefly move to change their posture during
sleep. This kind of brief movement during sleep might be
differently judged by the human scorer and FASTER2. In
most cases, our method aligned with humans even for
these transition epochs; therefore, we may feel uncer-
tainty about amending the automatic stage result because
these epochs looked ambiguous even to experts
(Figure 3i). The other potential difference came from
epochs where mice were performing repetitive move-
ments, such as grooming over a long period. Such epochs
occasionally exhibit an EEG pattern intermediate
between NREM sleep and wakefulness, but human
experts may be able to judge the epoch as wakefulness by
watching the simultaneously recorded video or relatively
large variation in the EMG signal (Figure 3j). In either
case, the rationale behind FASTER2’s judgment is easily
interpretable. In the rat data, the recall for wakefulness
and the precision for REM sleep were relatively low
(Table 4). Upon specific examination of epochs where
manual judgment and FASTER2’s judgment diverged,
many were cases where EMG signals were partially
detected within the epoch, confounding FASTER?2’s judg-
ment of REM sleep from wakefulness. These observations
might suggest that incorporating EMG signals into judg-
ment more aggressively can improve the performance of
FASTER2. However, it is challenging to introduce an
objective standard for judging stages solely based on the
EMG signals. Furthermore, these wrong judgments occur
relatively rarely because FASTER2 uses HMM, which
takes the stage transition probability into account, to sup-
press the sporadic transition of stages when the
EEG/EMG signals are ambiguous. Indeed, when com-
pared with expert judgments, FASTER2’s scores are suffi-
ciently high. Hence, FASTER2 can be regarded as
consistently providing objective judgment based on prob-
ability distributions according to the classical definition,
accepting some errors on epochs that exhibit as ambigu-
ously intermediate signals as human experts may also
wonder without any additional support, such as video.

In our previous report, we used the probability-den-
sity-function-clustering method after principal compo-
nent analysis (PCA) (Sunagawa et al., 2013). We input
concatenated power spectrums of EEG and EMG to the
PCA to find a combination of informative frequency pow-
ers both from EEG and EMG. This process was based on
an intuition that the EMG is a reliable signal in

distinguishing NREM sleep from wakefulness because
the body is active during wakefulness while resting dur-
ing sleep. However, it is not rare to see high EMG signals
during NREM sleep (Figure 1b). The high EMG activity
observed during NREM sleep is often stable in amplitude
and continues for tens of seconds to minutes. This rela-
tively long duration of high EMG signals indicates that
mice may need to keep muscle tension in order to pre-
serve a comfortable sleeping posture in the environment,
including their head attached to the EEG/EMG cable. It
is not a trivial task to computationally distinguish this
stable muscle tension in sleep from the normal muscle
activity in wakefulness. Therefore, we decided not to use
the EMG signal for distinguishing a NREM sleep brain
from the active brain in the present study. Additionally,
we used the classical definition as a priori knowledge to
form the feature space instead of using PCA, and we
summed powers to make a cluster close to a normal dis-
tribution in the feature space. These points successfully
contributed to make the EEG/EMG dataset more tracta-
ble with simple but functional methods such as GHMM
and significantly improved performance.

We emphasized providing judgment criteria based on
intuitive and classical indicators. The delta power during
NREM sleep, the dominance of high-frequency compo-
nents above 30 Hz during wakefulness, the relative
increase in theta power during REM sleep, and the signif-
icant decrease in EMG signals during REM sleep are all
metrics long recognized in the field of sleep research as
characteristics of each sleep stage. In FASTER2, we rede-
fined these metrics and achieved fully automatic sleep
stage classification based on such intuitive indicators.
This contrasts with metrics such as the skewness and
kurtosis of EEG signal distribution, which are somewhat
distant from the researchers’ intuition (Karasinski
et al., 1994). Unlike many existing automatic sleep stage
classification tools, which require training even if they
use familiar metrics such as delta power (Gross
et al., 2009), FASTER2 does not require the preparation
of training data. The metrics adopted in FASTER2 are
not novel per se. However, they are based on familiar
metrics like delta power and theta power, with slight sta-
tistical refinements in preprocessing to accommodate dif-
ferences in experimental conditions such as sampling
frequency. This approach eliminates the need for pre-
training or threshold adjustments, significantly improv-
ing user convenience.

Various algorithms for automatic sleep staging were
developed. Our method has the following four features:
(1) Addressing the Need for Standardization: Our method
proposes a standardized way to analyse rodent
EEG/EMG data, addressing the weakness of criteria in
defining sleep stages. This is a significant step forward,
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given the current reliance on human expertise for visual
inspection, which is time-consuming and prone to vari-
ability. (2) Statistical Features: By identifying three sim-
ple statistical features that can represent sleep-wake
stages in a 3D space, our method demonstrated that the
classification process could achieve high accuracy
depending on the simple features. This approach not only
aligns with traditional definitions but also allows for intu-
itive interpretation by experts. (3) Unsupervised Auto-
matic Staging: The development of an unsupervised
automatic staging algorithm based on these features is a
major advancement. Unlike supervised machine learning
models that require extensive labelled data for training,
our unsupervised approach eliminates the need to pre-
pare large amounts of annotated data. This property of
our method makes it more adaptable to various experi-
mental conditions and genetic backgrounds. (4) Broad
Validation: The validation of our method on both pub-
licly available datasets and those collected from our labo-
ratory demonstrates its applicability and robustness
across different experimental setups. This broad valida-
tion supports the generalizability of our method. Of
course, these points have been at least partly addressed
by existing methods. For example, tools have been pro-
posed that quantify the extent of interexpert variation
and can be used consistently across various laboratories
regardless of the expertise or animal species (Miladinovié
et al, 2019). Additionally, automated stage detection
tools using widely accepted indicators such as Delta,
Theta, Alpha, Beta, and Gamma have also been proposed
(Katsageorgiou et al., 2018). Furthermore, tools that pro-
vide universal classification results independent of train-
ing data by adopting an unsupervised learning approach
have been proposed (Sunagawa et al., 2013). More details
on various methods are summarized in comprehensive
reviews (Rayan, Agarwal, et al., 2024; Rayan, Szabo, &
Genzel, 2024). We believe that a recent trend in the
development of automated sleep staging tools is the use
of machine learning models. This direction might be
promising for subdividing sleep and wake stages to per-
form more detailed phenotypic analyses, and it is also a
very interesting study from a data science perspective.
However, automatically constructed features by machine
learning models do not necessarily align with familiar
indicators in the field of sleep research. Additionally,
because the models vary depending on the training data-
set, it is anticipated that the desired performance may
not be achieved across different researchers. We believe
that in the field of sleep research, it is first important to
classify the three most basic sleep stages (wakefulness,
REM sleep, and NREM sleep) independently of experi-
mental conditions. Tools like FASTER2, built from fea-
tures designed in line with familiar indicators, are
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expected to be useful in many instances. Once basic sleep
stage classification is achieved, it is expected to facilitate
the development of more detailed stage classification
methods using machine learning models and other
approaches.

3.4 | The FASTER2 can be a basis for
further analyses

In practical situations, researchers perform subsequent
analyses based on the annotated sleep stages. FASTER2
comprises several utility tools that provide basic follow-
up analyses, including summaries of each stage times in
a day, time series of the hourly stage time over the
recording period, and transition probabilities among
sleep stages. If the measurement has control and test
mice for comparison, FASTER2 performs the basic statis-
tical test, such as a t-test between them.

FASTER? is a suitable tool to analyse the delta-power
dynamics because it can stably annotate stages for a
lengthy EEG/EMG data, which is usually 5 days long or
longer to include a couple of days of the basal recording
followed by sleep deprivation and the recovery period.
The delta-power represents sleepiness, and its dynamics
is an important measure of sleep phenotype
(Borbély, 1982). FASTER2 has a utility tool to estimate
parameters of delta power dynamics, such as the time
constants of increase (z;) and decrease (z4) of delta power
(Franken et al., 2001), providing the research community
with potential avenues for further research such as ana-
lysing the delta power dynamics as a sleep phenotype.

There is also unexplored potential in the presented
methods. Our method consists of three simple statistical
features in line with familiar classical indicators. In the
3D space spanned by these three features, distributions of
sleep stage clusters are located in consistent positions
regardless of the experimental conditions. Studying how
distributions change in this space due to genetic muta-
tions or drug treatments would be interesting. For exam-
ple, epochs of deep sleep after sleep deprivation are
expected to appear far from the REM sleep cluster in the
NREM sleep cluster. On the other hand, epochs of
anaesthesia-induced sleep would occupy a unique posi-
tion that physiological perturbations such as sleep depri-
vation cannot reach. If this is the case, researchers can
test the gene function to respond to anaesthesia by seeing
the scatter plots of mice having a mutation in the gene.

In the current development of FASTER2, we focused
on achieving stable classification of the familiar three
stages. However, the possibility of further subdividing the
known wakefulness and NREM sleep stages remains an
intriguing subject for future investigation. The
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wakefulness cluster and NREM cluster can be separated
into multiple subclusters because they are often observed
that these clusters consist of multiple clusters (Figure 3).
More detailed analyses to determine if these distributions
correspond to states such as quiet wakefulness, active
wakefulness, or light and deep NREM sleep would be a
future avenue of research. Additionally, by adding more
indicators, the separability of phases like phasic/tonic
REM sleep might also be explored (Simor et al., 2020).
Furthermore, incorporating an algorithm to detect spin-
dles would enable the detection of transitional states
from NREM sleep to wakefulness or REM sleep (Uygun
et al., 2019). It is also notable that these analyses will
facilitate our understanding of the correspondence
between rodent sleep stages and human sleep stages
(Rayan, Szabo, & Genzel, 2024).

FASTER? is publicly available and can be freely used
by research communities. We developed FASTER2 to
provide sleep researchers with a practical tool for
EEG/EMG data analysis, hoping this tool can be a first
choice for various researchers and allows comparisons of
their results with this common platform and facilitating
sleep research. The codes for described analyses from
staging to delta power dynamics are available at https://
github.com/OrganismalSystemsBiology/faster2.

4 | METHODS

41 | Animal preparation and data
collection

For evaluation of the FASTER2 performance, we used a
C57BL/6N mouse (CLEA Japan, Japan) at 34 weeks old
at the recording and three DBA/2Cr mice (SLC Japan,
Japan) at 12 weeks old at the recording. Mice were
housed in a light-dark controlling rack (Nippon Medi-
cal & Chemical Instruments, Japan). All mice were given
food and water ad libitum and maintained at ambient
temperature and humidity. The light was controlled
under 12-h light and 12-h dark cycle. Under anaesthesia,
using the mixture of three anaesthetic agents given by
intraperitoneal injection: 0.75 mg/kg medetomidine
(Domitol, Nippon Zenyaku Kogyo Co., Ltd., Japan),
4 mg/kg midazolam (Dormicum, Astellas Pharma Inc.,
Japan), 5 mg/kg butorphanol (Vetorphale, Meiji Seika
Pharma Co., Ltd., Japan), the C57BL/6N mouse was
implanted with electroencephalogram (EEG) and electro-
myogram (EMG) electrodes for EEG/EMG recordings. To
monitor EEG signals, two stainless steel EEG recording
screws of 1.0 mm in diameter and 2.0 mm in length were
implanted on the skull of the cortex (anterior, +1.5 mm,;
right, +1.5 mm from bregma or lambda). EMG activity

was monitored by stainless steel, Teflon-coated wires
with 0.33 mm in diameter (AS633, Cooner Wire, U.S.A)
placed into the trapezius muscle. The EEG and EMG
wires were soldered to a miniature connector with four
pins in 2-mm pitch (Hirose Electric Co., Ltd., Japan).
Finally, the electrode assembly was fixed to the skull with
dental cement (Unifast III, GC Corporation, Japan). For
recovery from anaesthesia, 1.5 mg/kg atipamezole
(Antisedan, Nippon Zenyaku Kogyo Co., Ltd., Japan) was
used as a medetomidine antagonist. After a 10-day recov-
ery period, the mice were placed in experimental cages
with a connection of recording cable. The EEG/EMG sig-
nals were amplified (Biotex, Japan) and filtered (EEG, 1-
60 Hz; EMG, 5-128 Hz), then digitized at a sampling rate
of 128 Hz, and recorded using VitalRecorder software
(KISSEI Comtec Co., Ltd., Japan). The recorded kcd file
was converted to an EDF file (European Data Format) by
SLEEPSIGN software (KISSEI Comtec Co., Ltd., Japan).
Both the manual and the automated sleep staging were
carried out in the originally developed software.

We anaesthetized the DBA/2Cr animals with isoflur-
ane and implanted telemetry transmitters (Model
F20-EET, DSI, USA) for EEG/EMG recording. Two
stainless-steel screws (1-mm diameter) were soldered to
the wires of telemetry transmitters and inserted through
the skull of the cortex (anteroposterior, +1.0 mm; right,
+1.5 mm from bregma or lambda) and served as EEG
electrodes. Two other wires from the transmitter were
placed into trapezius muscles serving as EMG elec-
trodes. Animals were allowed at least 10 days to recover
from surgery. EEG/EMG data were recorded wirelessly
with food and water available ad libitum. The
EEG/EMG data collecting system consisted of transmit-
ters, an analogue-digital converter and a recording com-
puter. Sampling rate was 100 Hz for both EEG and
EMG. Gold Acquisition (version 4.00, DSI, USA) was
used for the recording. The EEG/EMG data were con-
verted to ASCII format, and both the manual and the
automated sleep staging were carried out in the origi-
nally developed software. All experimental procedures
and housing conditions were approved by the Institu-
tional Animal Care and Use Committee of RIKEN Kobe
Branch, and all the animals were cared for and treated
humanely in accordance with the Institutional Guide-
lines for Experiments using Animals.

We also used the EEG/EMG data that was reported
from our laboratory. These data came from eight mice
that were injected with adeno-associated virus carrying a
mutated CamkIIf gene driven by a CamkIla promoter or
wildtype CamklIIf gene as a control (Tone et al., 2022). In
addition, we downloaded publicly available EEG/EMG
data of Sprague-Dawley rats together with the manual
stage for 24 h (Ellen & Dash, 2021).
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4.2 | Data analysis

We used Python (version 3.10.11) on a desktop PC
(Windows10, Intel Core i7-7700, 64-GB memory) for all
analysis. For both manual and automated staging, EEG
and EMG voltage data were normalized to have mean of
zero and standard deviation of 1 along the time. When an
epoch has missing values of voltage, we try to recover the
epoch by replacing the missing values with values in
the same epoch by selecting from smaller indices. In case
more than half of the values are missing in an epoch, the
epoch is marked as unknown and excluded from the sub-
sequent analysis. The recorded voltage time series of EEG
and EMG data were scaled by a single scalar over the
recording period to normalize the mean and variance of
individual mice to (0, 1). This normalization ensured a
consistent plot range on the voltage axis in the later anal-
ysis but did not redistribute the power in the power spec-
trum. The normalized time series is divided into epochs
(usually with 8 s length). The power spectrum density
(PSD) was then calculated for each epoch by using the
scipy.signal.welch() function (Virtanen et al., 2020).
Because this function implements the Welch method for
estimating the PSD, it further divides an epoch into seg-
ments with a specified number of data points (nperseg).
We used the default value of 256 for nperseg to make seg-
ments with an overlap of 50%. The leftovers after the last
segment were not evaluated. We specified the number of
data points for FFT (nfft)
to|256 * sampling_frequency/100| so that the length of an
FFT is around 2.56 s regardless of the sampling fre-
quency. When the sampling frequency is higher than
100 Hz, FFT data points are zero-padded. This assures we
obtain powers in the frequency range of 0-50 Hz at
~0.39-Hz resolution, by taking the first 129 values
returned from the function.

The powers were log-transformed with base of 10 and
then normalized at each frequency bins so that the mean
and standard deviation are respectively 0 and 1 across all
epochs. When a normalized power is extremely deviated
(more than 3 SD) from the mean, it is replaced with a
value selected randomly from a normal distribution
(mean, SD) = (0, 1). The normalized powers of EEG and
EMG constitute three metrics, that is, the low-frequency
power, high-frequency power, and REM-metric. The low-
frequency power is composed of EEG powers in the fre-
quency range from O to 20 Hz excluding the range of
theta powers (from 4 to 10). The high-frequency power is
composed of EEG powers in the frequency range from
30 to 50 Hz. The REM-metric is given by theta-frequency
power — delta-frequency power — muscle power. The
theta-frequency is composed of EEG powers in the fre-
quency range from 4 to 10 Hz. The delta-power is

composed of EEG powers in the frequency range from
0 to 4 Hz. The muscle power is composed of EMG powers
in the frequency range from 30 to 50 Hz. Each of the
high, low, theta, delta, and muscle power is a sum of
powers in the corresponding frequency range divided by
the squared number of the summed powers. The number
of summed powers in each of the low, high, theta, delta,
and muscle power are respectively 37 (n_low_freq),
52 (n_high_freq), 15 (n_theta), 11 (n_delta), and
52 (n_muscle_freq) in the present study.

The clusters of epochs are spread into the 3D space
spanned by the three metrics; low-frequency power,
high-frequency power, and REM-metric. To classify the
NREM sleep and active clusters, epochs are projected on
the 2D plane of low-frequency power (x-axis), high-
frequency power (y-axis). For centring the two clusters
on the diagonal line (y = x), the epochs are projected
onto the separation line whose slope is (1, —1), which is
perpendicular to the diagonal line, and then the parame-
ters of mean and SD of clusters are estimated on the sepa-
ration line by using the Bayesian Gaussian mixture
model of sklearn (Garreta & Moncecchi, 2013). The all
epoch are then shifted along the separation line so that
the centre of cluster means is on the diagonal line. In
case the estimation of parameters is not converged,
another separation line with a different slope (0, —0.5) is
tested. This exceptional process may allow for better han-
dling of EEG data, in case it has limited information in
the high-frequency power, by focusing on the low-
frequency power more than the normal process. If this
alternative separation line does work either, the process
falls back to the normal separation axis.

The epochs left side of the diagonal line are separated
into wakefulness and REM sleep in the 3D space. For the
separation, we first selected epochs that are reliably
either from wakefulness or REM sleep by focusing on
epoch with the condition: (low-frequency power < 0) and
((REM-metric < 0) or (REM-metric > rem-floor)). The
condition: low-frequency power < 0 excludes epochs con-
taminating from NREM sleep, REM-metric < 0 selects
epochs from wakefulness, and REM-metric > rem-floor
selects epochs from REM-sleep. The constant rem-floor is
defined as sqrt(n_theta) + sqrt(n_muscle_freq) based on
the definition of the REM-metric, expecting the mean of
data-frequency power is zero, means of theta-frequency
power and muscle-power are higher and lower than at
least 1 SD, respectively in REM sleep. We then applied
the Gaussian Mixture Model of sklearn to the selected
epochs with the intention to refine REM-sleep and wake-
fulness clusters. Here we estimated three normal distri-
butions instead of two, with three sets of initial means for
REM sleep, wakefulness, and intermediate clusters. This
is because the REM-metric includes EMG signal and the
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EMG signal apparently originates from various states
such as NREM sleep wake and active wake (walking,
running, and eating etc.) in the wakefulness, one normal
distribution often cannot capture the distribution of
epochs from wakefulness. We incorporated epochs of the
additional intermediate cluster into wakefulness, because
the intermediate cluster positions around REM-
metric ~ 0, it is more likely from wakefulness rather than
from REM-sleep.

By using the estimated parameters (means and
covariances) of three clusters as initial parameters of
REM sleep, NREM sleep, and wakefulness clusters, we
applied GHMM of hmmlearn (Lebedev, 2016) to the
whole epochs in the 3D space. In the estimation process,
we fixed the means and updated covariances of each
clusters along with the transition probabilities across
clusters. Because we fixed the means of clusters, we
could keep the coverage over the reliable epochs of each
cluster and update the shape of clusters by taking the
transition probabilities into account. In the updating
process, we constrained principal axes of the REM-sleep
cluster to stay within the borders of REM-metric > 0,
low-frequency power < 0. Also, we constrained principal
axes of NREM sleep and wakefulness cluster to stay
below and above the diagonal line, respectively. The
length of the principal axis corresponds to 95% confi-
dence area of the estimated normal distribution. In the
exceptional case where any effective REM cluster was
not found, that is, means of clusters found in the process
of REM and wakefulness separation were both REM-
metric < 0, we estimated the two clusters of wakefulness
and NREM sleep by applying GHMM to the whole
epochs in the 3D space.

4.3 | Manual annotation of sleep stages
In manual annotation, the EEG signal and the EMG sig-
nal were displayed on-screen simultaneously and each
8-s epoch was staged by visual inspection as NREM sleep,
REM sleep and wakefulness by the following criteria.
NREM sleep was characterized by high-amplitude EEG
signals with relatively wide peak-to-peak interval reflect-
ing the enhanced power at the delta-frequency band
(0.5-4 Hz) with low or stable EMG power. REM sleep
was characterized by low-amplitude EEG with modest
width of peak-to-peak interval reflecting the enhanced
power at the theta-frequency band (4-10 Hz) with very
low EMG power due to the muscle atonia. The wakeful-
ness was characterized by low-amplitude EEG with nar-
row width of peak-to-peak interval reflecting the
enhanced power at the high-frequency band (30 Hz) with
high phasic EMG signals.

44 | Preparation of the test data

To test the robustness against the biases of sleep stages in
the EEG/EMG signals, we synthesized EEG/EMG data of
lday Ilength from an actual 5days recording
of C57BL/6N mouse. We randomly selected with replace-
ment corresponding number of epochs from the original
5 days data according to the manually annotated stages
and shuffled them to compose the 1-day data.

We applied FASTER2 to mice EEG/EMG data
obtained in our previous study (Tone et al., 2022). We
selected a dataset consisting of eight mice expressing WT
CamkIIf or T287D mutant under the CamkIlapromoter.
The four WT mice exhibited a normal sleep phenotype;
NREM sleep was 649 + 46 min (mean + SD; n = 4), and
REM sleep was 85 + 4 min (mean + SD; n = 4) a day.
The four T287D mice exhibited a long sleep phenotype;
NREM was 874 + 54 min (mean + SD; n = 4), and REM
sleep was 118 + 3 min (mean + SD; n = 4) a day. The
24 h of the second day in the 5 days recording was manu-
ally staged and compared with the stages given by
FASTER2.

We applied FASTER?2 to rat EEG/EMG dataset that is
publicly available. This dataset contains raw EEG/EMG
signals of nine groups of 44 Sprague-Dawley rats, man-
ual staging for 24 h recordings with 4-s epoch. Out of the
nine groups, we picked up one group referred as bobmar-
ley in the original paper. Because the original data con-
tains two EEG channels and one EMG channel for a rat,
we arbitrarily selected one EEG channel to make a pair
of EEG/EMG signals for each rat and combined the rats
in the group into one edf file by using a custom Python
script with the MNE (Gramfort et al., 2013) and pyedflib
(Nahrstaedt & Lee-Messer, 2019). The edf file was then
analysed by FASTER2 with setting the epoch length to
4 s. The accuracy was evaluated based on the manually
annotated stages in the original paper.
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